
30 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

ARTÍCULO ORIGINAL/ORIGINAL ARTICLE

Paralelización de un experimento para determinar

la escalonabilidad de grafos bipartitos usando Apache Spark

Parallelizing an Experiment to Decide Shellability on Bipartite
Graphs Using Apache Spark

Paralelização de um experimento para determinar a shellabilidade
de grafos bipartidos usando Apache Spark

Julián D. Arango-Holguín1; Milena Cárdenas-Álzate2; Andrés D. Santamaría-Galvis3,11

1 Ing Sist;Desarrollo Institucional;
2 Ing Sist,Departamento Ingeniería de Sistemas, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia,
3 Ing Sist, Msc, Departamento Ingeniería de Sistemas, Facultad de Ingeniería, Universidad de Antioquia, Medellín
 Email: david.galvis@udea.edu.co

Recibido: febrero 23 de 2017 Aceptado: abril 14 de 2017

Resumen

La escalonabilidad* de grafos es un problema en NP del que se desconoce su inclusión en las clases de complejidad P o
NP-completa. Con el fin de comprender su comportamiento computacional en el caso particular de los grafos bipartitos,
podría ser de utilidad disponer de un método eficiente para generar y analizar instancias escalonables. La literatura reporta
un experimento secuencial, y de costo exponencial, diseñado para determinar la escalonabilidad de un conjunto de instan-
cias. En el presente trabajo, y con el fin de mejorar el desempeño experimento mencionado, proponemos tres alternativas
utilizando Apache Spark: una multinúcleo, otra multinodo y otra completamente paralela. Además, comparamos el tiempo
de ejecución de cada una de ellas respecto a la versión original en grafos bipartitos aleatorios con 10,12,15,20 y 50 vérti-
ces, y obtuvimos aceleraciones (speedups) entre 1.37 y 1.67 para la versión multinúcleo, entre 2.34 y 3.56 para la versión
multinodo, y entre 2.37 y 3.12 para la versión completamente paralela. Los resultados sugieren que la paralelización del
experimento podría mitigar los enormes tiempos de ejecución del enfoque original.

Palabras clave: Apache™ Hadoop®, Apache Spark™, escalonabilidad de grafos bipartitos, experimentos en paralelo, pro-
blemas NP sin clasificar.

Abstract

Graph shellability is an NP problem whose classification either in P or in NP-complete remains unknown. In order to unders-
tand the computational behavior of graph shellability on bipartite graphs, as a particular case, it could be useful to develop

* Nota: Es difícil hacer una traducción literal de la palabra shellability y sus derivadas en español sin sacrificar su significado original. Usamos la
palabra escalonabilidad y derivadas como se hace en (Cruz & Estrada, 2008) para respetar la convención impuesta por los autores y porque nos
parece que sugiere la idea de secuencia que es importante en la definición. Respecto al uso de la palabra shellabilidade en portugués, tomamos
como precedente a (Lewiner, 2005)

Paralelización de un experimento para determinar la escalonabilidad de grafos bipartitos usando Apache Spark 31

Introduction

Simplicial complexes are combinatorial structures fre-
quently used in geometrical applications because of
their flexibility for modeling objects from different spa-
tial dimensions. The presence of one of their combi-
natorial properties, known as shellability, has proved
to be useful in practical situations (see, for example
the works of Herlihy (2010) and Müller-Hannemann
(2001)). The concept also appears in graph theory
where, through the Stanley-Reisner correspondence, a
simplicial complex may be associated to a graph (Van
Tuyl & Villarreal, 2008).

Simplicial complex shellability and its graph counter-
part have been well-studied and widely used in diver-
se mathematical and practical issues, but there exists
relatively little work about their computational com-
plexity. Although deciding shellablility requires signi-
ficant amounts of computational time, it is currently
unknown if the problem is either in P or in NPC (i.e.
NP-complete) (Kaibel y Pfetsch, 2003).

In order to understand the computational behavior of
graph shellability, and based on some combinatorial
characterizations, the problem is commonly tackled by
analyzing particular graph families. Fortunately, in the
case of bipartite graphs a complete characterization
was made in (Van Tuyl y Villarreal, 2008) and (Cruz
y Estrada, 2008) that was further used in (Santamaria-

Galvis, 2013) to propose a bipartite graph shellability
solver called isShellable_BG.

isShellable_BG decides bipartite graph shellability
in exponential time and was used in a sequentially de-
signed experiment as a tool for collect some data that
could be used in further research to construct some
conjectures about the problem’s behavior.

In this paper, with the aim of improving the performance
of the sequential experiments performed in (Santamaria-
Galvis, 2013), we propose and implement three parallel
alternatives using Apache Spark™ (Spark™, 2016).

Methods and Materials

Main Notions and Required Results

A (simple and finite) graph G is a tuple of two finite sets
(V,E) where V is the set of vertices and E is a set of unor-
dered pairs over V called the edges of G; no edge is
repeated and loops, i.e. edges from one vertex to itself,
are not allowed. Two vertices x1,x2∈V are said to be ad-
jacent in G if (x1,x2)∈E. A subset F of V is an independent
set of G if not two vertices of F are adjacent in G; F is
a maximal independent set if it is not properly included
inside another independent set. If x is a vertex of V, we
denote by N(x) the open neighborhood of x, i.e., the set
of all vertices adjacent to x, N[x] : ={x} ∪ N(x) the closed
neighborhood of x, and deg(x) :=|N(x)| the degree of x.

an efficient way to generate and analyze results over sets of shellable and non-shellable instances. In this way, a sequentially
designed exponential time experiment for deciding shellability on randomly generated instances was proposed in literature.
In this work, with the aim of improving the performance of that experiment, we propose three alternative approaches using
Apache Spark™, we called multi-core, multi-node and full-parallel. We tested and compared their execution time for bipar-
tite graphs with 10,12,15,20 and 50 vertices with regard to the original version, and we got speedups between 1.37 and
1.67 for the first one, between 2.34 and 3.56 for the second one, and between 2.37 y 3.12 for the last version. The results
suggest that parallelization could relieve the large execution times of the original approach.

Keywords: Apache™ Hadoop®, Apache Spark™, bipartite graph shellability, parallel experiments, unclassified NP pro-
blems.

Resumo

A shellabilidade dos grafos é um problema em NP, do qual é desconhecida sua inclusão nas classes da complexidade P ou
NP-completo. A fim de compreender seu comportamento computacional no caso particular dos grafos bipartidos, poderia
ser útil ter um método eficiente para gerar e analisar instâncias shellables. A literatura relata um experimento sequencial,
e custo exponencial, projetado para determinar a escalabilidade do um conjunto de instâncias. Neste trabalho, e a fim
do melhorar o desempenho do experimento mencionado, propomos três alternativas usando Apache Spark: uma multi-
núcleo, outra multinó e outra completamente paralela. Além disso, nós compararmos o tempo de execução de cada um
deles respeito da versão original em grafos bipartidos com 10,12,15,20 e 50 vértices e obtivemos acelerações (speedups)
entre 1.37 e 1.67 para a versão Multinúcleo, entre 2.34 e 3.56 para a versão Multinó, e entre 2.37 e 3.12 para a versão
completamente paralela. Os resultados sugerem que a paralelização do experimento poderia atenuar os enormes tempos
de execução da abordagem original.

Palavras-chave: Apache™ Hadoop®, Apache Spark™, shellabilidade de grafos bipartidos, experimento paralelo, proble-
mas NP não classificado

32 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

A vertex with degree 1 is called a pendant vertex. A graph
G is bipartite if its set of n vertices can be partitioned in
two sets Va and Vb such that no edge exists in vertices of
the same set. Figure 1 (left) represents a bipartite graph.
We say that a bipartite graph is complete if every vertex
in Va is adjacent with every vertex in Vb. We denote it
by Kr,s, where r = |Va |, s = |Vb|.

or even fits in another class into NP (Kaibel, y Pfetsh,
2003). With the aim of understanding the complexi-
ty of SCS we could deal with a related problem. The
next definition introduces a kind of simplicial complex
which could be generated from a given graph. Thus,
SCS could be partially studied through some graph fa-
milies where shellability is fully characterized, e.g. the-
re are complete characterizations for the property on
chordal, bipartite, arc-circular, vertex decomposable,
simplicial and recursively simplicial graphs in (Van Tuyl
y Villarreal, 2008), (Cruz y Estrada, 2008), (Woodroo-
fe, 2009) and (Castrillón y Cruz, 2012).

Definition 2 (Independence (simplicial) complex of a
graph (Van Tuyl y Villarreal, 2008)). Let G = (V,E) be
a graph on the vertex set V = {x1,…,xn}. By identifying
vertex xi with the variable xi in the polynomial ring R
= k[x1,…,xn] over a field k, we can associate G with a
quadratic square-free monomial ideal I(G) = ({xi xj|
(xi,xj)∈E}) where E is the edge set of G, the ideal I(G) is
called the edge ideal of G. By using the Stanley-Reisner
correspondence, we can also associate G with the
simplicial complex ΔG, called the independence (sim-
plicial) complex of the graph G, where IΔG = I(G). Thus,
the faces of ΔG are the independent sets of G.

Now, we can define shellable graph and graph shella-
bility as a decision problem.

Definition 3 (Shellable graph (Van Tuyl & Villarreal,
2008)). Let G be a graph and ΔG its independence com-
plex. G is shellable if ΔG is a shellable simplicial complex.

Problem 2 (GS: graphShellability)
INPUT: A graph G or a list of all its maximal independent
 sets.
QUESTION: Is G shellable? (return either YES or NO).

It is also unknown whether GS is either in P or in NPC,
and that is also the case for bipartite graphs; however,
as we shall show in detail, the next theorem is useful to
decide GS for bipartite graphs.

Theorem 4 (Van Tuyl y Villarreal, 2008), (Cruz y Estra-
da, 2008). Let G be a bipartite graph. Then G is she-
llable if and only if there are adjacent vertices x and y
where x is a pendant vertex such that the graphs G \
NG [x] and G\NG [y] are shellable.

Notation: From now on, and for the sake of brevity,
we shall use GSbipartite when we refer to GS for bipar-
tite graphs.

isShellable_BG: A solver for GSbipartite

Figure 1. A bipartite graph G and its associated (pure) simpli-
cial complex ∆G. The ordering F1, F2, F3, F4, F5, F6 is a shelling
of ∆G; consequently, ∆G is a shellable simplicial complex and
G is a shellable graph.

A (n abstract) simplicial complex Δ over a set of vertices
V is a finite and nonempty collection of subsets of V ca-
lled faces, such that if A is a face of Δ, then so is every
nonempty subset of A. Figure 1 (right) shows a graphi-
cal representation of a simplicial complex. The dimen-
sion of a face A is defined as dim(A) := |A| —1 and the
simplicial complex dimension is defined as dim(Δ) :=
max(dim(A)). The maximal faces in Δ are called facets.
If every facet in Δ has dimension d, is d-dimensional
and is called pure. For sets A ⊆ B, there exists the boo-
lean interval [A; B] := {C| A ⊆ C ⊆B}. Let A := [Ø; A].
A complex of the form A is called simplex (Björner y
Wachs, 1996), (Schläfli, 1901).

We can define shellable simplicial complex and its re-
lated decision problem as follows.

Definition 1 (Shellable simplicial complex (Björner y
Wachs, 1996)). A simplicial complex is called shellable
if its facets can be arranged in a linear order F1,F2,…,Ft,
in such a way that the subcomplex is pure
and (dim(F_k) – 1)-dimensional for all k=2,…,t. Such an
ordering of facets is called a shelling.

Problem 1 (SCS: SimplicialComplexShellability (Kaibel &
 Pfetsch, 2003)
 INPUT: A simplicial complex ∆ represented by a list of
 its facets.
 QUESTION: Is ∆ shellable? (return either YES or NO).

It is easy to show that SCS is a decision problem in
NP, but it is currently unknown whether it is in P, NPC

()� �
I

k

l k
F F

�

�

1

1

Paralelización de un experimento para determinar la escalonabilidad de grafos bipartitos usando Apache Spark 33

Let G be a bipartite graph on the vertex set V with
n:=|V| and St(G) be the set of the maximal indepen-
dent sets of G. A direct interpretation of the theorem
4 leads to the exponential time algorithm isShe-
llable_BG (Procedure 1), which was proposed by
(Santamaria-Galvis, 2013) as a tool to analyze the com-
putational behavior of GSbipartite It was implemented
in C/C++ using the igraph library (Csárdi y Nepusz,
2016). This is a faster alternative than calculate GS di-
rectly, i.e. by first obtaining all the maximal indepen-
dent sets of G. Note that the mere problem of finding
the maximum independent set in G is an NP-hard pro-
blem for the general case. Fortunately, isShella-
ble_BG offers a way to solve GSbipartite directly from
G by avoiding the heavy precalculations required to
construct St(G).

Procedure 1: Algorithm isShellable_BG(G)

Data: A bipartite graph G = (V. E)

Result: true if G is shellable, false otherwise

 begin

1 if (V  ≤ 2) then return true

2 x ← a pendant vertex in VG

3 if (x = null) then return false

4 y ← NG(x)

5
if (isShellable_BG (G\NG[y]) and
isShellable_BG (G\NG[x])) then
 return true

else

 return false

To understand the asymptomatic behavior of GSbipartite
over increasing values of n and to build some conjec-
tures, a sequentially designed experiment was also
implemented by (Santamaria-Galvis, 2013) using is-
Shellable_BG. The next section explains the pro-
tocol over which the experiment was performed and
how we built our proposal.

Statistical analysis

Before describing our proposal, it is necessary to pro-
perly introduce the original experimental protocol in
such a way that we can describe our three approaches.

Original experimental protocol

For several values of n, a set of t initial instances was
created for each n. Each initial instance is a complete

bipartite graph Kr,s, r + s = n with its rs edges randomly
stored in a file; besides, r and s are also randomly cho-
sen from the given n. Every initial instance was used to
generate a set of actual instances. Let denote the i-th
initial instance and Gn,m an (actual) instance of GSbiparti-

te with n vertices and m edges. Once t and ε ϵ (0,1) are
fixed, an experiment could be performed for several
values of n by using the next experimental protocol:

Procedure 2: Experimental protocol

Data: n ∈ £, t ∈ £, ε ∈ (0,1)

 begin

1 Generate t initial instances

2 m ← εn

3 foreach i ∈ {1,..., t } do

4
 Take the first m edges from and generate
 Gn,m.

5
 Decide shellability of Gn,m with isShellable_
 BG.

6 m ← m + εn.

7
 If m ≤ rs, then go back to line 4, otherwise,
 continue with the next instance (line 3)

Thus, a sequentially designed experiment was perfor-
med in (Santamaria-Galvis, 2013) after setting the va-
lues ε = 0.1, t = 200, and n = 50,100,150 over the
previous protocol. Here, the word sequential is em-
ployed to mean that in the whole experiment just a
single computer (node) was used and, inside it, only
one core; the other cores remained idle. Because of
the low values of n that could be tested there, no con-
clusive results were obtained regarding the asymptotic
behavior of GSbipartite.

In this work, under the assumption that parallelization
could relieve to some extent the computational bur-
den involved in the original sequentially performed ex-
periment, we propose three parallel ways of running
the aforementioned experiment by slightly modifying
some steps in the protocol. Here, it is important to
stress that our parallel approaches are intended for the
experiments themselves, not for the exponential time
routine isShellable_BG.

Our proposal

To achieve parallelization over the experimentation,
we propose three options by using Apache Spark™
(Spark™, 2016) as a framework for cluster compu-

K
r s

i

,

()

K
r s

i

,

()

34 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

ting and Apache™ Hadoop® (Hadoop®, 2016.) as
underlying distributed file system. We call them multi-
core approach, multi-node approach and full-parallel
approach. They are completely defined by the modifi-
cations they impose over the protocol of Procedure 2.
In this description, we intentionally omit those acces-
sory details we consider strictly operative:

1) After line 1, the whole set of actual instances is
generated from the initial ones. They are stored in
Hadoop.

2) Depending on the approach, Spark runs line 5 —
originally intended to be run under a sequential
scheme— in one of these ways: (i) In the multi-core
approach, Spark uses just one node during all the
experimentation, but each core inside is always
busy running isShellable_BG over a different
instance. Although the cores are independently
used, the other resources (main memory, cache,
etc.) are shared. (ii) In the multi-node approach,
Spark uses several nodes: one node as master and
several nodes as slaves. Every slave can decide
GS_bipartite by using its resources, but just one
core per node is actually used. (iii) The full-parallel
approach, proceeds as the previous one, but with
two cores per node.

Performance Test

Let us fix the values ε = 0.1 and t = 200. Then, to con-
trast the efficiency of our proposal, we proceed as fo-
llows:

For every value of n in {10,12,15,20,50}, a set of initial
instances was created; after that, the set of actual ins-
tances was generated and stored in Hadoop in order
to be evaluated by the solver afterwards. For increasing
values of n, the sets of instances were run over the three
approaches in this way: (i) The protocol from Procedure
2 was run as is since line 3 to line 7. The total time To (n)
(in seconds) that it took to accomplish the whole task
(i.e., to solve the problem for every instance in the given
n), was stored and used as reference. Note that this is,
in fact, the original approach. (ii) In an analogous way,
we run the modified protocols for the multi-core, multi-
node and full-parallel approaches over the same lines
and we store the respective total times TMC (n), TMN (n)
and TFP (n) (in seconds). The multi-node and full-parallel
approaches used one master and two slaves; besides,
the same master is also used as the single node for the
multi-core approach. The master node has 4 cores and
57GB of RAM, and the slave nodes have 2 cores and
15GB of RAM.

Once the experiments were finished, we had to choo-
se an appropriate measurement for their relative effi-
ciency. Thus, in the sense of (Hennessy, y Patterson,
2012), we opted for the speedups of the enhanced ex-
periments. The speedup of some computational task
reflects an improvement in speed of its execution and
consequently means an improvement in its efficiency.
The speedup could be properly defined as the ratio bet-
ween the execution time for a task without using the
enhancement and the execution time for the same task
using it. Thereby, we could define and
 as the speedups for the multi-core, multi-node
and full-parallel approaches, respectively. In this way,
every speedup reflects how fast a routine is regarding
some fixed reference.

Results

After setting the parameters, we run the aforementio-
ned performance test, and then, we tabulated the re-
sults. Table 1 displays the execution time alongside the
speedups of our proposal, both over increasing values
of n. Time is rounded to the nearest second in each
case, and speedups are rounded to two decimal pla-
ces.

Table 1. Execution Times and Speedups over increasing
values of

n To TMC TMN TFP SMC SMN SFP

10 59 43 23 24 1.37 2.57 2.46

12 82 49 35 33 1.67 2.34 2.48

15 121 75 34 47 1.61 3.56 2.57

20 116 73 34 49 1.59 3.41 2.37

50 396 290 168 127 1.37 2.36 3.12

Total execution time T0, TMC, TMN, TFP, (in seconds) for the original,
multi-core, multi-node and full-parallel approaches, respectively. SMC,
SMN, and SFP for the multi-core, multi-node and full-parallel speedups,
respectively

In order to evince the improvements, we plotted two
graphics: Figure 2 contrasts the performance of every
approach as function of n. Figure 3 compares the three
speedups, also, as function of n.

The results suggest increasing efficiency regarding the
original protocol design. The speedups fluctuate bet-
ween 1.37 and 1.67 for the multi-core approach, bet-
ween 2.34 and 3.56 for the multi-node, and between
2.37 and 3.12 for the full-parallel. This behavior can be

S
T

T
S

T

T
MC

MC

MN

MN

: , :� �

0 0

S
T

T
FP

FP

: �

0

Paralelización de un experimento para determinar la escalonabilidad de grafos bipartitos usando Apache Spark 35

observed in Figure 2 where time usually reduces from
one approach to another, and in Figure 3 where the
speedups for the multi-core approach are always un-
der the multi-node and full-parallel approaches. Maybe,
the use of several machines with independent resour-
ces for the multi-node approach played the differential
factor in the performance.

Discussion

This work was intended for verifying whether one of
the enhanced approaches could be used instead of the
original one. A first conclusion we can draw is that the
computational burden of the sequential protocol could
be effectively relieved by using the parallel techniques
we consider here. The times and speedups in Table 1
confirm it. However, we can distinguish different levels
of improvement.

Figure 2 suggests that, for increasing values of n, the
multi-core approach is outperformed by the others. Re-
garding them, we can see that multi-node and full-para-
llel approaches are almost in a draw for n < 20, then, for
n = 20, the full-parallel approach is less efficient than the
multi-node one, but the performance swaps when n =
50. Those differences are reinforced in Figure 3 but in
terms of speedups, which range between 2.34 and 3.56
for the multi-node approach, and between 2.46 and
3.12 for the full-parallel one. Nevertheless, it could be
hazardous to generalize a concrete behavior, mainly be-
cause the test was performed for relatively small values
of n. Nevertheless, we could conjecture that for incre-
asing values of n the difference between the approa-
ches will stabilize. We suspect that the more parallel
elements (nodes and cores) the approach includes, the
less time is required to complete the whole experiment.
Thus, the full-parallel approach looks like the best candi-
date to deal with higher values of n.

As a future work, a new version should try the new
library GraphX of Apache Spark™ in order to deal di-
rectly with some graph related functionalities. The use
of GraphX could be better than our approach because
the library seems to coexist in the same architectural
level of the framework.

On the other hand, and in a more general sense, we
suggest this parallel scope to deal with similar com-
binatorial problems where experimentation over
massive sets of data is required either to construct
mathematical conjectures or to analyze their asymp-
totic behavior.

Acknowledgment

This research was conceived inside the context of the
course Proyecto Integrador 2 offered by the Computer
Science Engineering program at the University of An-
tioquia. The University provided us with those compu-
tational and human resources required to accomplish
the proposed goals through the research group Inge-
niería y Software. We want to express our gratitude for
their commitment to our work.

References
Björner A, Wachs ML. Shellable Nonpure Complexes and Posets I.

Trans. Amer. Math. Soc. 1996;348(4):1299-1327.

Castrillón ID, Cruz R.). Escalonabilidad de grafos e hipergrafos sim-
ples que contienen vértices simpliciales. Matemáticas: Enseñan-
za Universitaria. 2012;20(1):29-80.

Cruz R, Estrada M. Vértices simpliciales y escalonabilidad de grafos.
Morfismos. 2008;12:21-36.

Figure 2. Total time from the different approaches over in-
creasing values of .

Figure 3. Speedups of each approach for increasing values
of n

36 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

Csárdi G, Nepusz T. 2006. The igraph software package for com-
plex network research. InterJournal Complex Systems. Retrie-
ved from http://igraph.sf.net

Csárdi G, Nepusz T. (2012, June). The igraph software package for
complex network research, (ver. 0.6). Retrieved from http://
igraph.sf.net

Hadoop®, A. 2016. The Apache® Software Foundation. Retrieved
from The Apache® Software Foundation: http://hadoop.apa-
che.org/

Hennessy JL, Patterson DA. 2012. Computer Architecture: A Quan-
titative Approach. 5th ed. Elsevier - Morgan Kaufmann.

Herlihy M. 2010. Applications of Shellable Complexes to Distributed
Computing. CONCUR (pp. 19-20). Springer.

Herlihy, M., & Rajsbaum, S. 2010. Concurrent Computing and She-
llable Complexes. DISC (pp. 109-123). Springer.

Kaibel V, Pfetsch ME. 2003. Some Algorithmic Problems in Polytope
Theory. Algebra, Geometry, and Software Systems (outcome of
a Dagstuhl Seminar) (pp. 23-47). Springer-Verlag.

Lewiner T. 2005. Complexos de Morse discretos e geométricos.
master's thesis. Rio de Janeiro.

Müller-Hannemann M. Shelling Hexahedral Complexes for Mesh
Generation. Journal of Graph Algortihms and Applications,
2001;5(5):59-91.

Santamaria-Galvis AD. 2013. On Algorithmic Complexity of She-
llability in Graphs and their Associated Simplicial Complexes.
Master's thesis, Facultad de Minas, Universidad Nacional de
Colombia, Medellin, Colombia, Medellín.

Schläfli L. (1901, January). Theorie der vielfachen Kontinuität; hrsg.
im Auftrage der Denkschriften_Kommission der Schweizer. Na-
turforschenden Gesellschaft. Zürich: Zürcher & Furrer.

Spark™ A. 2016. Apache Spark™ Lightning-fast cluster computing.
(The Apache® Software Foundation) Retrieved from Apache
Spark™ Lightning-fast cluster computing: http://spark.apache.
org/

Van Tuyl A, Villarreal RH. Shellable graphs and sequentially Co-
hen-Macaulay bipartite graphs. J. Combin. Theory Ser. A,
2008;115(5):799-814.

Woodroofe R. Vertex decomposable graphs and obstructions to
shellability. Proc. Amer. Math. Soc. 2009;137(10):3235-3246.

