
Una nueva aproximación al emparejamiento con preservación de orden 37

ARTÍCULO ORIGINAL/ORIGINAL ARTICLE

A novel approach to approximate order preserving matching

Una nueva aproximación al emparejamiento con preservación de
orden

Uma nova abordagem al emparelhamento com preservação de ordem

Juan C. Mendivelso-Moreno1; Rafael A. Niquefa-Velásquez2; Yoán J. Pinzón-Ardila3 ;
Germán J. Hernández-Pérez4

1 Ingeniero de sistemas, Msc, PhD. Grupo de investigación DiscreMath: Matemáticas Discretas y Ciencias de la
 Computación, Facultad de Ciencias, Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá,
 Colombia.
2 Ingeniero de sistemas, MSc. Grupo de Investigación FICB-PG, Institución Universitaria Politécnico Grancolombiano,
 Bogotá, Colombia.
3 Ingeniero de sistemas e industrial, MSc, PhD. Universidad Pontificia Javeriana, Cali, Colombia.
4 Ingeniero de Sistemas, MSc, PhD. Grupo de investigación en Algoritmos y Combinatoria (ALGOS), Facultad de Ingeniería,
 Departamento de Ingeniería de Sistemas e Industrial, Universidad Nacional de Colombia, Bogota, Colombia.
 Email: jcmendivelsom@unal.edu.co

Recibido: febrero 23 de 2017 Aceptado: abril 14 de 2017

Resumen

Un problema importante en el análisis de mercado de valores y la recuperación de información musical es el empareja-
miento con preservación de orden. Este problema es una variante recientemente introducida del problema de empareja-
miento de cadenas en el que busca subcadenas en el texto cuya representación natural coincide con la representación
natural del patrón. La representación natural de una cadena X es una cadena que contiene los rankings de los caracteres
que ocurren en cada posición de X. Entonces, el emparejamiento con preservación de orden considera la estructura inter-
na de las cadenas en lugar de sus valores absolutos. Pero tanto en el análisis de mercado de valores como en la recupe-
ración de información musical, se requiere más flexibilidad: no sólo las subcadenas con exactamente la misma estructura
son de interés, sino también las que son similares. En este artículo se propone una versión aproximada del problema de
emparejamiento con preservación de orden basada en las distancias δγ que permiten un error individual entre el ranking
de los símbolos correspondientes (delimitada por δ) y un error global de todas los rankings (delimitadas por γ). Se presenta
un algoritmo que resuelve este problema en O(nm+m log m). Los resultados experimentales verifican la eficiencia del
algoritmo propuesto.

Palabras clave: Búsqueda de cadenas, Análisis experimental de algoritmos, Métrica de similitud de cadenas.

Abstract

A problem with important applications in stock market analysis and music information retrieval is order-preserving mat-
ching. This problem is a recently introduced variant of the string matching problem that searches for substrings in the text
whose natural representation matches the natural representation of the pattern. The natural representation of a string X is a
string that contains the rankings of the characters occurring at each position of X. Then, order-preserving matching regards

38 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

Introduction

String matching is one of the most useful computatio-
nal primitives (Apostolico and Galil (1997)). The input
to the string matching problem consists of two strings
defined over a given alphabet ∑: the pattern P = P1..m

and the text T = T1..n. The output should list all occu-
rrences of the pattern string in the text string, i.e. all the
positions i such that Pj = Ti + j-1,1≤ j ≤ m. However, exact
string matching does not support all the applications.
For instance, in some areas the alphabet is drawn from
a set of integer values. These integer strings are nor-
mally found in cipher text, financial data, meteorology
data, image data, and music data, to name some. In
such numeric strings, it would be unrealistic and in-
effective to search for exact occurrences of a pattern
but rather ought to search for similar instances of it.
Then, some variants of the problem have been defined,
including δγ-matching and order-preserving matching.

The δγ-matching problem consists of finding all the text
windows in T for which: (i) the distance to the corres-
ponding symbols in P is at most δ; and (ii) the sum of
such distances is at most γ. In other words, the output of
this problem is the set of positions i such that |Pj – Ti+j-1|
≤ δ,1 ≤ j ≤ m, and . Notice that δ bounds
the individual error of each position while γ bounds
the total error. Then, δγ-matching has important appli-
cations in bioinformatics, computer vision, but mainly,
music information retrieval. Many kinds of algorithms
have been put forward to resolve δγ-matching (see for

instance Cambouropoulos et al., (2002), Crochemore
et al., (2002), Crochemore et al., (2003), Clifford and
Iliopoulos (2004), Cantone et al., (2004), Crochemore
et al., (2005) and Lee et al., (2006)). Recently, it has
been used to make more flexible other string matching
paradigms such as parameterized matching (see for
instance Lee et al., (2008) and Mendivelso (2010)),
function matching (Mendivelso et al., (2012)) and jum-
bled matching (Mendivelso et al., (2015) and Mendi-
velso et al., (2014)).

On the other hand, order-preserving matching con-
siders the order relations within the numeric strings
rather than the approximation of their values. In par-
ticular, the natural representation of a string is a string
composed by the rankings of each symbol in such
string. Then, order-preserving matching consists of fin-
ding every text window in T such that its natural re-
presentation matches the natural representation of P.
Note that this problem is interested in matching the
internal structure of the strings rather than their absolu-
te values. Then, it has important applications in music
information retrieval and stock market analysis. Speci-
fically, in music information retrieval, one may be in-
terested in finding matches between relative pitches;
similarly, in stock market analysis the variation pattern
of the share prices may be more interesting than the
actual values of the prices (Kim et al., (2014)). Since
Kim et al., (2014) and Kubica et al., (2013) defined the
problem, it has gained great attention from several

the internal structure of the strings rather than their absolute values. But both stock market analysis and music information
retrieval require more flexibility: not only the substrings with exactly the same structure are of interest, but also the ones
that are similar. In this paper, we propose an approximate version of order-preserving matching based on the δγ- distances
that permit an individual error between the ranking of corresponding symbols (bounded by δ) and a global error of all the
positions (bounded by γ). We present an algorithm that solves this problem in O(nm+m log m). Experimental results verify
the efficiency of the proposed algorithm.

Keywords: String searching, Experimental algorithm analysis, Strings similarity metric, String searching algorithms.

Resumo

Um grande problema na análise do mercado de ações e na recuperação de informações musicais é o emparelhamento
com a preservação de ordem. Esse problema é uma variante recentemente introduzida do problema de correspondência
de cordas que procura por substrings no texto cuja representação natural corresponde à representação natural do padrão.
A representação natural de uma corda X é uma corda que contém as classificações dos caracteres que ocorrem em cada
posição de X. Então, a correspondência de preservação de ordem considera a estrutura interna das cordas em vez de seus
valores absolutos. Mas na análise do mercado de ações, bem como na recuperação da informação musical, é necessária
mais flexibilidade: não são apenas as sub-cordas com exatamente a mesma estrutura que interessam, mas também as que
são semelhantes. Neste artigo, propomos uma versão aproximada da emparelhamento com preservação de ordem com
base nas distâncias δγ- que permitem um erro individual entre a classificação de símbolos correspondentes (delimitada por
δ) e um erro global de Todas as posições (delimitadas por γ). Apresentamos um algoritmo que resolve este problema em
O(nm+m log m). Os resultados experimentais verificaram a eficiência do algoritmo proposto.

Palavras-chave: Emparelhamento das cordas, Análise experimental dos algoritmos, Métrica de similaridade da cordas,
algoritmos de busca da cordas.

P T
j i jj j

m

� �
� �

�
� 1 �

Una nueva aproximación al emparejamiento con preservación de orden 39

other researchers (Crochemore et al., (2013), Croche-
more et al., (2013a), Chhabra et al., (2014), Faro et al.,
(2015), Crochemore et al., (2015), Hasan et al., (2015),
Chhabra et al., (2015)).

Notwithstanding, the only approximate variant of or-
der-preserving matching in previous literature, to the
best of our knowledge, was recently proposed by
Gawrychowski et al., (2015). In particular, they allow
k mismatches between the pattern and each text win-
dow. Then, they regard the number of mismatches
but not their magnitude. In this paper, we propose a
different approach to approximate order-preserving
matching that bounds the magnitude of the mismat-
ches through the δγ-distance. Specifically, δ is a bound
between the ranking of each character in the pattern
and its corresponding character in the text window;
likewise, γ is a bound on the sum of all such differen-
ces in ranking. Thus, δ and γ respectively restrict the
magnitude of the error individually and globally across
the strings. We define δγ-order-preserving matching as
the problem of finding all the text windows in T that
match the pattern P under this new paradigm.

Figure 1

As an example of how δγ-order-preserving matching
finds similarity in the order of the strings, we illustrate
two substrings of a text T that are similar to a pattern P
in Figure 1. The strings T=〈9,10,15,19,12,11,18, 23, 22,
26, 7, 14, 16, 21, 17, 13, 20, 25, 24, 8〉 and P = 〈14, 17,
20, 18, 12, 15, 23, 22〉 are defined over the alphabet
∑={1..26}. The X-axis and the Y-axis respectively corres-
pond to the positions and values and rankings of both
the pattern P and the substrings in T where there is two
δγ-approximate order preserving matches with δ=2
and γ=6 in positions 2 and 12. Recall that δ is a bound
on the distance between corresponding symbols and γ
is a bound on the sum of such differences. The figure in
the lower side shows the similarity between the natural
representation of the pattern and the natural represen-
tation of the substrings T2..9 and T12..19. Then, with nr(P)
in Figure 1, we refer to the natural representation of

string P, i.e., the sequence of the rankings of the sym-
bols in the integer string P. More formal definitions of
these concepts are provided in the next section.

The motivation to define δγ-order-preserving matching
stems from the observation that the application areas
of order-preserving matching, mainly stock market
analysis and music information retrieval, require to
search for occurrences of the pattern that may not be
exact but rather have slight modifications in the mag-
nitude of the rankings. For example, let us assume that
the text T presented in Figure 1 is a sequence of stock
prices and that we want to determine whether it conta-
ins similar occurrences of the pattern P (also shown in
this figure). Under the exact order-preserving matching
paradigm, there are no matches, but there are similar
occurrences at positions and 2 and 12. In particular,
T2..9 and T12..19 are similar, regarding order structure,
to the pattern. This similarity can be seen even more
clearly if we consider natural representations of these
strings (also shown in in Figure 1). These matches can
be retrieved with δ=2 and γ=6.

The outline of the paper is as follows. In Section Preli-
minaries and problem definition, we present the preli-
minaries and define the δγ-order-preserving matching
problem. Next, we present its solution in Section Al-
gorithm. We evaluate the efficiency of our algorithm
in Section Experimental Results. Finally, conclusions are
drawn in the last section.

Preliminaries and problem definition

A string is a sequence of zero or more symbols from an
alphabet ∑; the string with zero symbols is denoted by
ε. The cardinality of alphabet ∑, denoted by |∑|, is the
number of characters in ∑. The set of all strings over the
alphabet ∑ is denoted by ∑*. Throughout the paper, we
consider the numeric alphabet Σσ which is assumed to
be an interval of integers from 1 to |∑|, i.e. Σσ={1,2,..,σ}=
where |∑|=σ. T=T1...n is a string of length n defined over
Σσ. Ti is used to denote the i-th element of T, Ti..j is used as
a notation for the substring Ti Ti+1..Tj of T, where 1 ≤ i ≤ j
≤ n. Similarly, a pattern P = Pi..m is a string of length m de-
fined over Σσ. For easy notation, we use Ti to denote the
length-m substring of T starting at position i; thus Ti = Ti..i+m-

1. Next, we present the definition of δγ-match and order-
preserving match for the string comparison problem.

Definition 1: δγ—match: Let X = Xi..m and Y=Y1..m
be two equal-length strings defined over Σσ.
Also, let δ and γ be two given numbers (δ,γ ∈£).
Strings X and Y are said to δγ-match, denoted as
 . Note that
the operator is conmutative.
X Y iff X Y Y

j

m

j j j
� � � � �

� ��

�

� �, max 1 and Xjj = 1

m

�
�

�

40 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

Example 1: There is a δγ-match, for δ=2 and γ=7,
between the strings X=〈1,3,1,3,6,3,3,4,1,2〉 and
Y=〈2,2,1,3,4,3,4,5,2,2〉 defined over Σ6 as |X-
Y|=〈1,1,0,0,2,0,1,1,1,0〉. Note that the maximum di-
fference between corresponding characters is 2 and
takes place at the fifth position. Similarly, the sum of all
differences is 7.

Now, some important concepts for the definition of
order-preserving match are introduced. Let X=X1..m be
a string defined over Σσ. The rank of Xi in X is defined
as RankX(i)=1+| {j ∶ Xj < Xi,1 ≤ j < i }|. Furthermore, the
natural representation of X is nr(X)=Rankx (1)Rankx (2)…
Rankx (m). For simplicity of the description, we assu-
me that all the characters appear at most once in X;
however, the extension to the general case is straight-
forward. For example, if X = 〈10,15,19,12,11,18,23,22〉,
then nr(X) = 〈1,4,6,3,2,5,8,7〉.

Definition 2: Order-Preserving Match: Let X=X1..m and
Y = Y1..m be two equal-length strings defined over Σσ.
Strings X and Y are said to order-preserving match, de-
noted as X↭Y iff nr(X) = nr(Y).

Example 2: Given integer strings X = 〈10, 15, 19, 12,
11, 18, 23, 22〉 and Y = 〈12,18,22,15,13,20,30,23〉,
we conclude that X↭Y as nr(X) = nr(Y) = 〈1, 4, 6, 3,
2, 5, 8, 7〉

Next, we define order-preserving match for the string
comparison problem and then generalize it to the as-
sociated pattern matching problem.

Definition 3: δγ-order-preserving match: Let X = X1..m

and Y=Y1..m be two equal-length strings defined over
Σσ. Also, δ and γ be two given numbers (δ,γ ∈£).
Strings X and Y are said to δγ-order-preserving match,
denoted as X↭ , iff nr(X) nr(Y). Note that the ope-
rator ↭ is conmutative.

Example 3: Given δ = 2, γ = 6, X = 〈10,15,19,12,11,18,23,
22〉 and Y = 〈14,17,20,18,12,15,23,22〉, we conclu-
de that X↭ Y, as nr(X) = 〈1,4,6,3,2,5,8,7〉, nr(Y) =
〈2,4,6,5,1,3,8,7〉 and nr(X) nr(Y).

Problem 1: δγ-order-preserving matching: Let P =
P1..m be a pattern string and T = T1..n be a text string,
both defined over Σσ. Also, let δ and γ be two given
numbers (δ,γ ∈£). The δγ-order-preserving matching
problem is to calculate the set of all indices i, 1 ≤ i ≤
n - m + 1, satisfying the condition P↭ Ti.

Algorithm

The input of the algorithm is the text T = T1..n and pat-
tern P = P1..m, both defined over integer alphabet Σσ,

and the integer bounds δ,γ∈£. We begin by creating
a linear list with the length-m substring that starts at
position 1 of the text, i.e. T1; this list is denoted by 𝒯.
Furthermore, we create a sorted linear, called 𝒮, with
the same characters. Other two (unsorted) lists are
created: 𝒯nr and 𝒫nr; they contain the natural represen-
tations of 𝒫 and 𝒯1, respectively. Then, the δγ- condi-
tions are evaluated: the maximum difference between
corresponding characters of 𝒫nr and 𝒯nr is compared
with δ and the sum of such differences is compared
with γ. If there is a δγ-order-preserving match (see De-
finition 3), position 1 is reported. After this, the natural
representation of the other text windows is compared
with the natural representation of the pattern. Specifi-
cally, our strategy is updating 𝒯nr in O(m) time so that
it contains the natural representation of the next text
window to consider.

Let us assume that 𝒯nr contains the natural representa-
tion of the text window Ti, for 1 ≤ i < n - m + 1. Then,
in order to transform 𝒯nr so that it contains the natural
representation of Ti+1, we update the ranks in 𝒯 that
are greater than the rank of 𝒯1 (the element that must
be removed from the text window) by reducing them
in one unit; note that the ranks that are less than 𝒯1

nr

remain the same. Then, we remove the element at the
first position of 𝒯 and 𝒯nr. Also, the corresponding ele-
ment must be removed from 𝒮, but it may be in any
position of the list as it is sorted. After this step, the new
character in the text window, namely 𝒯i+m, is inserted
at the end of 𝒯. It is also inserted in 𝒮 but at the correct
position according to the order. Such position corres-
ponds to its rank in the text window, so it is added at
the end of 𝒯nr. Finally, the ranks of the elements in the
text window that are greater than or equal to 𝒯 are
incremented in 1 due to the arrival of Ti+m.

The pseudocode of this algorithm, which we call δγ-
OPM, is presented in section Algorithm 1: δγ—OPM
algorithm. The elements of the lists are indexed from 1
to m. The methods of the lists are specified as follows:

•	 add(x): For unsorted lists, X is inserted at the end of
the list. For sorted lists, X is inserted in the correct
position according to the order.

•	 remove(i): The i-th element is removed from the list.

•	 indexOf(x): It returns the index at which X occurs in
the list.

The time complexity analysis of the algorithm is de-
rived as follows. Line 1 takes constant time. Lines 2
and 4 take O(m log m) resulting from the sorting ope-
ration. The total cost of filling 𝒯 and 𝒮 is θ(m) as all of
the insertions are done at the end of the lists (see line

�
�

�

�

�

�

�

�

�

�

�

�
�

�

i m

nr

�

Una nueva aproximación al emparejamiento con preservación de orden 41

3). Next, the operations within the loop of lines 5-12
are analysed for a single iteration. Evaluating the δγ-
conditions takes θ(m) time (see line 6). Updating the
rankings of 𝒯nr takes θ(m) (see lines 7-8 and 11-12).
Deletions from the first positions take constant time
(see line 9). Even the removal from S can be done in
constant time if we use doubly linked lists and keep
pointers from the elements in 𝒯 to the corresponding
elements in 𝒮. The insertions at the end of the list take
O(1) (see line 10); however, the insertion in the sorted
list 𝒯nr takes linear time to find the correct position
according to the order if doubly linked lists are used.
Notice that if arrays were used to represent the linear
lists, it would cost O(log m) to find the correct position
of an element; however, the movement entailed by an
insertion or deletion increases this cost to O(m).

Then, the total cost of the loop is O(nm) as the cost
of each iteration is O(m) and there are O(n) iterations.
Then, the total time complexity of δγ-OPM algorithm
is O(nm + m log m). Since this is the first algorithm for
the δγ-order-preserving matching problem, we com-
pare it with a naive algorithm. In particular, a naive
algorithm would calculate the natural representation
of each text window and compare it with the natural
representation of the pattern. Calculating the natural
representation of each text window takes O(m log m)
so the total time complexity is O(n m log m). The pro-
posed algorithm improves this complexity to O(nm+m
log m). It is important to remark that further improve-
ments to this complexity are not easy to achieve since
the updates on the considered text window may chan-
ge all the rankings in it. Specifically, the removal of an
element and the insertion of a new element in the win-
dow may greatly change the rankings. Furthermore the
alignment of the pattern changes. Thus, it is necessary
to evaluate the δγ- condition, which takes O(m).

Algorithm 1: δγ—OPM algorithm

Input: P = P1..m,T = T1..n, δ, γ, Σσ

Output: {i∈{1..n-m+1}: P ↭ Ti}

1. Create: 𝒯, 𝒯nr, 𝓟nr as Lists, and 𝒮 as a Sorted List.

2. W ← T1..m.sort()

3. for j = 1→ m do 𝒯.add(Tj), 𝒮.add(Wj)

4. 𝒯nr ← calculateNR(T1..m)), 𝓟nr ← calculateNR(P)

5. for j =1→ m do

6. if isAMatch(𝓟nr, 𝒯nr, δ, γ) then report i

7. for j = 2→m do

8. if 𝒯j
nr < 𝒯1

nr then 𝒯j
nr ← 𝒯j

nr –1

9. 𝒮.remove(𝒮.indexOf(𝒯nr)), 𝒯nr.remove(1),𝒯.remo-
ve(1)

10. 𝒮.add(𝒯i+m),𝒯.add(𝒯i+m),𝒯nr.add(𝒮.indexOf(Ti+m))

11. for j = 1→m –1 do

12. if 𝒯j
nr ≥ 𝒯m

nr then 𝒯j
nr ← 𝒯j

nr + 1

13. if isAMatch(𝒫nr, 𝒯nr, δ, γ) then report n-m+11

Example 4: Given δ=2, γ=6, and strings P=〈14,17,20,
18,12,15,23,22〉 and T = 〈9,10,15,19,12,11,18,23,22,26,
7,14,16,21,17,13,20,25,24,8〉, defined over Σ30, the
output of the δγ-order-preserving matching problem is
{2,12} because P↭ T2 and P↭ T12 (see Figure 1).
Notice that P↭ T2 was shown in Example 3 by ta-
king P as Y and T2 as X. On the other hand, P ↭
T12 since T12 = 〈14,16,21,17,13,20,25,24〉, as nr(P) =
〈1,4,6,3,2,5,8,7〉, nr(T12) = 〈2,3,6,4,1,5,8,7〉 and nr(X)
 nr(Y).

Experimental results

In this section, we describe the experimental setup we
designed to evaluate the performance of the algorithm
proposed. We compare it against the naive algorithm
which processes each length-m text window separa-
tely. The time complexity of our solution is O(nm+m
log m), while the time complexity of the naive algo-
rithm is O(nm log m). In this section, we experimentally
verify these theoretical bounds. Particularly, in section
Experimental setup we present the experimental fra-
mework, while we describe the data generation in
Section Random data generation Then, in Section Ex-
perimental results and analysis, we discuss the results
obtained.

Experimental setup: In section Hardware and soft-
ware, we describe the hardware and software used
for the experiments. Then, we show how we vary the
input parameters in Section Parameters.

•	 Hardware and software: Both algorithms, the nai-
ve algorithm and our solution, were implemented
using C++. The computer used for the experiments
was a Lenovo ThinkPad with a processor Intel(R)
Core(TM) i7 4600u CPU @ 2.10GHz 2.69 GHz and
installed RAM memory of 8GB. The computer was
running 64-bit Linux Ubuntu 14.04.5 LTS. The C++
compiler version was g++ (Ubuntu 4.8.4-2ubun-
tu1~14.04.3) 4.8.4.

•	 Parameters: It is clear that the defined problem of
Order Preserving Matching under δ and γ distances

�

�

�

�

�

�

�

�

�

�

�

�

42 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

has several parameters. They may change depen-
ding on the area of study in which the problem and
pattern searching algorithms are applied. To show
how our solution behaves with different configura-
tion of the given parameters, we perform five types
of experiments. In each experiment, we vary one

of the given parameters n,m,δ,γ and ∑, and let the
other four parameters fixed at a given value. For
each experiment type, we performed five different
experiments and took the median as the value to
plot. The variation of the parameter values for each
experiment type is presented in Table 1.

Table 1. Parameters of the Experiments.

Variable Varying n Varying m Varying δ Varying γ Varying σ

n
[500,10000]

∆n=500
10000 10000 10000 10000

m 40
[5,100]
∆m=5

40 40 40

δ 10 10
[0,38]
∆δ=2

10 10

γ 60 60 60
[0,95]
∆γ=5

60

σ 100 100 100 100
[2,40]
∆σ=2

Random data generation: An experiment consists of
two stages. The first stage is the pseudo-random ge-
neration of a text T of length n and the pattern P of
length m. The second stage is the execution of both
algorithms (naive and the proposed algorithm) on the
generated strings P and T. The random generation of
each character of both the pattern P and the text T is
done by calling a function that pseudo-randomly se-
lects a number between 1 and Σσ with the same pro-
bability for each number to be selected.

Experimental results and analysis: The first result to
highlight is the fact that, in every experiment, our solu-
tion has lower execution time than the naive solution.
The results shown in Figure 2 and Figure 3 show that
the size of the alphabet and the parameter γ have no

Figure 2. Experimental results varying the size of the al-
phabet.

Figure 3. Experimental results varying ϒ.

Figure 4. Experimental results varying δ.

Una nueva aproximación al emparejamiento con preservación de orden 43

impact on the execution time of any of the algorithms.
The result shown in Figure 4 shows no effect of the
parameter δ on the naive algorithm. However, incre-
asing δ yielded a small increase in the execution time
of the experiments with our algorithm. That behavior
motivated the setup of more experiments with varying
values of the parameter δ; notwithstading, despite the
small increase of the execution time in our algorithm,
our solution outperformed the naive solution in all the
experiments.

Figures 5 and Figure 6 verify the theoretical complexity
analysis that states that n and m are the parameters
that really determine the execution time of both algo-
rithms. In particular, the time complexity of the naive
algorithm is O(nm log m) while ours is O(nm + m log
m).

In Figure 6, m is a constant and n is a variable while
in Figure 5, n is a constant and m is a variable. Notice
that, under these conditions, the graphs are expected
to be linear and the experiments verify that. Morever,
the log m extra factor of the naive algorithm's time
complexity can be seen in the graphs as our solution
always outperforms the naive solution in all the experi-
ments. This also applies to the cases where both n and
m are constant (see Figure 2, Figure 3 and Figure 4).

Conclusions and future work

In this paper, we propose an approximate variant of
order-preserving matching that permits an individual
error between the ranking of corresponding charac-
ters, and a global error across all the positions. The
former is bounded by δ and the latter by γ. We present
a O(nm+m log m) algorithm to solve this new problem.
We verified its efficiency through experimental results.
In particular, we clearly showed that the proposed al-

gorithm outperforms the naive solution. To the best of
our knowledge, it is the first approximate version of
the problem that takes into account the magnitude of
the rankings.

The question about the lower bound of an algorithm
for the Order Preserving Matching under δ and γ dis-
tances remains open; it is left to see if there is an algo-
rithm of better asymptotic complexity than O(nm+m
log m).

References
Apostolico A, Galil Z. 1997. Pattern matching algorithms. Oxford

University Press, USA.

Cambouropoulos E, Crochemore M, Iliopoulos C, Mouchard L, Pin-
zon Y. Algorithms for computing approximate repetitions in
musical sequences. International Journal of Computer Mathe-
matics, 2002;79(11):1135–1148.

Crochemore M, Iliopoulos C, Lecroq T, Plandowski W, Rytter W.

2002. Three Heuristics for δ-Matching, δ-BM Algorithms. Pro-
ceedings of the 13th Annual Symposium on Combinatorial Pat-
tern Matching. Springer-Verlag London, UK,178–189.

Crochemore M, et al. Occurrence and Substring Heuristics for d-
Matching. Fundamenta Informaticae. 2003;56(1):1–21.

Clifford R, Iliopoulos C. Approximate string matching for music
analysis. Soft Computing, 2004;8(9):597–603.

Cantone D, Cristofaro S, Faro S. 2004. Efficient Algorithms for the δ-
Approximate String Matching Problem in Musical Sequences.
Proc. of the Prague Stringology Conference.

Crochemore M, Iliopoulos C, Navarro G, Pinzon Y, Salinger A. Bit-
parallel (δ,γ)-Matching and Suffix Automata. Journal of Discrete
Algorithms. 2005;3(2-4):198–214.

Lee I, Clifford R, Kim S-R. 2006. Algorithms on extended (δ,γ)-
matching. Computational Science and Its Applications-ICCSA.
Springer. 1137–1142.

Figure 5. Experimental results varying the size of the pattern. Figure 6. Experimental results varying the size of the text.

44 ORINOQUIA - Universidad de los Llanos - Villavicencio, Meta. Colombia Suplemento Vol. 21 - No 1 - Año 2017

Lee I, Mendivelso J, Pinzon Y. 2008. δγ–parameterized matching.
String Processing and Information Retrieval. Springer. 236–248.

Mendivelso J. 2010. Definition and solution of a new string sear-
ching variant termed δγ–parameterized matching. Master’s
thesis. Universidad Nacional de Colombia.

Mendivelso J, Lee I, Pinzon Y. 2012. Approximate function matching
under δ-and γ-distances. String Processing and Information Re-
trieval. Springer. 348–359.

Mendivelso J, Pino C, Niño L, Pinzon Y. Approximate abelian pe-
riods to find motifs in biological sequences. Lecture Notes in
Bioinformatics, Computational Intelligence Methods for Bioin-
formatics and Biostatistics. 2015;8623:121-130.

Mendivelso J, Pinzon Y. 2014. A novel approach to approximate
parikh matching for comparing composition in biological se-
quences. Proceedings of the 6th International Conference on
Bioinformatics and Computational Biology.

Kim J, Eades P, Fleischer R, Hong S H, Iliopoulos C S, Park K, Puglisi
S J, Tokuyama T. Order-preserving matching. Theoretical Com-
puter Science. 2014;525:68–79.

Kubica M, Kulczynski T, Radoszewski J, Rytter W, Walen T. A linear
time algorithm for consecutive permutation pattern matching.
Information Processing Letters. 2013;113(12):430–433.

Crochemore M, Iliopoulos CS, Kociumaka T, Kubica M, et al. 2013.
Order preserving suffix trees and their algorithmic applications.
arXiv preprint arXiv:1303.6872.

Crochemore M, Iliopoulos CS, Kociumaka T, Kubica M, Langiu A,
Pissis SP, Radoszewski J, Rytter W, Walen T. 2013a. Order-pre-
serving incomplete suffix trees and order-preserving indexes.
String Processing and Information Retrieval. Springer. 84–95.

Chhabra T, Tarhio J. 2014. Order-preserving matching with filtration.
Experimental Algorithms. Springer. 307–314.

Faro S, Kulekci O. 2015. Efficient algorithms for the order preserving
pattern matching problem. arXiv preprint arXiv:1501.04001.

Crochemore M, Iliopoulos CS, Kociumaka T, Kubica M, Langiu A,
Pissis SP, Radoszewski J, Rytter W, Walen T. 2015. Order-pre-
serving indexing. Theoretical Computer Science.

Hasan M M, Islam AS, Rahman MS, Rahman MS. Order preser-
ving pattern matching revisited. Pattern Recognition Letters.
2015;55:15–21.

Chhabra T, Kulekci MO, Tarhio J. 2015. Alternative algorithms for
order-preserving matching. Proceedings of the Prague Stringo-
logy Conference. 36–46.

Gawrychowski P, Uznanski P. 2015. Order-preserving pattern mat-
ching with k mismatches. Theoretical Computer Science.

