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Resumen

Un problema importante en el análisis de mercado de valores y la recuperación de información musical es el empareja-
miento con preservación de orden. Este problema es una variante recientemente introducida del problema de empareja-
miento de cadenas en el que busca subcadenas en el texto cuya representación natural coincide con la representación 
natural del patrón. La representación natural de una cadena X es una cadena que contiene los rankings de los caracteres 
que ocurren en cada posición de X. Entonces, el emparejamiento con preservación de orden considera la estructura inter-
na de las cadenas en lugar de sus valores absolutos. Pero tanto en el análisis de mercado de valores como en la recupe-
ración de información musical, se requiere más flexibilidad: no sólo las subcadenas con exactamente la misma estructura 
son de interés, sino también las que son similares. En este artículo se propone una versión aproximada del problema de 
emparejamiento con preservación de orden basada en las distancias δγ que permiten un error individual entre el ranking 
de los símbolos correspondientes (delimitada por δ) y un error global de todas los rankings (delimitadas por γ). Se presenta 
un algoritmo que resuelve este problema en O(nm+m  log m). Los resultados experimentales verifican la eficiencia del 
algoritmo propuesto.

Palabras clave: Búsqueda de cadenas, Análisis experimental de algoritmos, Métrica de similitud de cadenas.

Abstract

A problem with important applications in stock market analysis and music information retrieval is order-preserving mat-
ching. This problem is a recently introduced variant of the string matching problem that searches for substrings in the text 
whose natural representation matches the natural representation of the pattern. The natural representation of a string X is a 
string that contains the rankings of the characters occurring at each position of X. Then, order-preserving matching regards 
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Introduction

String matching is one of the most useful computatio-
nal primitives (Apostolico and Galil (1997)). The input 
to the string matching problem consists of two strings 
defined over a given alphabet ∑: the pattern P = P1..m 

and the text  T = T1..n. The output should list all occu-
rrences of the pattern string in the text string, i.e. all the 
positions i such that Pj = Ti + j-1,1≤ j ≤ m. However, exact 
string matching does not support all the applications. 
For instance,  in some areas the alphabet is drawn from 
a set of integer values. These integer strings are nor-
mally found in cipher text, financial data, meteorology 
data, image data, and music data, to name some. In 
such numeric strings, it would be unrealistic and in-
effective to search for exact occurrences of a pattern 
but rather ought to search for similar instances of it. 
Then, some variants of the problem have been defined, 
including δγ-matching and order-preserving matching.

The δγ-matching problem consists of finding all the text 
windows in T for which: (i) the distance to the corres-
ponding symbols in P is at most δ;  and (ii) the sum of 
such distances is at most γ. In other words, the output of 
this problem is the set of positions i such that |Pj – Ti+j-1| 
≤ δ,1 ≤ j ≤ m, and       . Notice that δ bounds 
the individual error of each position while γ bounds 
the total error. Then, δγ-matching has important appli-
cations in bioinformatics, computer vision, but mainly, 
music information retrieval. Many kinds of algorithms 
have been put forward to resolve δγ-matching (see for 

instance Cambouropoulos et al., (2002), Crochemore 
et al., (2002), Crochemore et al., (2003), Clifford and 
Iliopoulos (2004), Cantone et al., (2004), Crochemore 
et al., (2005) and Lee et al., (2006)). Recently, it has 
been used to make more flexible other string matching 
paradigms such as parameterized matching (see for 
instance Lee et al., (2008) and Mendivelso (2010)), 
function matching (Mendivelso et al., (2012)) and jum-
bled matching (Mendivelso et al., (2015) and Mendi-
velso et al., (2014)).

On the other hand, order-preserving matching con-
siders the order relations within the numeric strings 
rather than the approximation of their values. In par-
ticular, the natural representation of a string is a string 
composed by the rankings of each symbol in such 
string. Then, order-preserving matching consists of fin-
ding every text window in T such that its natural re-
presentation matches the natural representation of P. 
Note that this problem is interested in matching the 
internal structure of the strings rather than their absolu-
te values. Then, it has important applications in music 
information retrieval and stock market analysis. Speci-
fically, in music information retrieval, one may be in-
terested in finding matches between relative pitches; 
similarly, in stock market analysis the variation pattern 
of the share prices may be more interesting than the 
actual values of the prices (Kim et al., (2014)). Since 
Kim et al., (2014) and Kubica et al., (2013) defined the 
problem, it has gained great attention from several 

the internal structure of the strings rather than their absolute values. But both stock market analysis and music information 
retrieval require more flexibility: not only the substrings with exactly the same structure are of interest, but also the ones 
that are similar. In this paper, we propose an approximate version of order-preserving matching based on the δγ- distances 
that permit an individual error between the ranking of corresponding symbols (bounded by δ) and a global error of all the 
positions (bounded by γ). We present an algorithm that solves this problem in O(nm+m  log m).  Experimental results verify 
the efficiency of the proposed algorithm.

Keywords: String searching, Experimental algorithm analysis, Strings similarity metric, String searching algorithms.

Resumo

Um grande problema na análise do mercado de ações e na recuperação de informações musicais é o emparelhamento 
com a preservação de ordem. Esse problema é uma variante recentemente introduzida do problema de correspondência 
de cordas que procura por substrings no texto cuja representação natural corresponde à representação natural do padrão. 
A representação natural de uma corda  X é uma corda que contém as classificações dos caracteres que ocorrem em cada 
posição de  X. Então, a correspondência de preservação de ordem considera a estrutura interna das cordas em vez de seus 
valores absolutos. Mas na análise do mercado de ações, bem como na recuperação da informação musical, é necessária 
mais flexibilidade: não são apenas as sub-cordas com exatamente a mesma estrutura que interessam, mas também as que 
são semelhantes. Neste artigo, propomos uma versão aproximada da emparelhamento com preservação de ordem com 
base nas distâncias δγ- que permitem um erro individual entre a classificação de símbolos correspondentes (delimitada por 
δ) e um erro global de Todas as posições (delimitadas por γ). Apresentamos um algoritmo que resolve este problema em  
O(nm+m  log m). Os resultados experimentais verificaram a eficiência do algoritmo proposto. 

Palavras-chave: Emparelhamento das cordas, Análise experimental dos algoritmos, Métrica de similaridade da cordas, 
algoritmos de busca da cordas.
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other researchers (Crochemore et al., (2013), Croche-
more et al., (2013a),  Chhabra et al., (2014), Faro et al., 
(2015), Crochemore et al., (2015), Hasan et al., (2015), 
Chhabra et al., (2015)).

Notwithstanding, the only approximate variant of or-
der-preserving matching in previous literature, to the 
best of our knowledge, was recently proposed by 
Gawrychowski et al., (2015). In particular, they allow 
k mismatches between the pattern and each text win-
dow. Then, they regard the number of mismatches 
but not their magnitude. In this paper, we propose a 
different approach to approximate order-preserving 
matching that bounds the magnitude of the mismat-
ches through the δγ-distance. Specifically, δ is a bound 
between the ranking of each character in the pattern 
and its corresponding character in the text window; 
likewise, γ is a bound on the sum of all such differen-
ces in ranking. Thus, δ and γ  respectively restrict the 
magnitude of the error individually and globally across 
the strings. We define δγ-order-preserving matching as 
the problem of finding all the text windows in T that 
match the pattern P under this new paradigm.

Figure 1 

As an example of how δγ-order-preserving matching 
finds similarity in the order of the strings, we illustrate 
two substrings of a text T that are similar to a pattern P 
in Figure 1. The strings T=〈9,10,15,19,12,11,18, 23, 22, 
26, 7, 14, 16, 21, 17, 13, 20, 25, 24, 8〉 and P = 〈14, 17, 
20, 18, 12, 15, 23, 22〉 are defined over the alphabet 
∑={1..26}. The X-axis and the Y-axis respectively corres-
pond to the positions and values and rankings of both 
the pattern P and the substrings in T where there is two 
δγ-approximate order preserving matches with δ=2 
and γ=6 in positions 2 and 12. Recall that δ is a bound 
on the distance between corresponding symbols and γ 
is a bound on the sum of such differences. The figure in 
the lower side shows the similarity between the natural 
representation of the pattern and the natural represen-
tation of the substrings T2..9 and T12..19. Then, with nr(P) 
in Figure 1, we refer to the natural representation of 

string P, i.e., the sequence of the rankings of the sym-
bols in the integer string P. More formal definitions of 
these concepts are provided in the next section.

The motivation to define δγ-order-preserving matching 
stems from the observation that the application areas 
of order-preserving matching, mainly stock market 
analysis and music information retrieval, require to 
search for occurrences of the pattern that may not be 
exact but rather have slight modifications in the mag-
nitude of the rankings. For example, let us assume that 
the text T presented in Figure 1 is a sequence of stock 
prices and that we want to determine whether it conta-
ins similar occurrences of the pattern P (also shown in 
this figure). Under the exact order-preserving matching 
paradigm, there are no matches, but there are similar 
occurrences at positions and 2 and 12. In particular, 
T2..9 and T12..19 are similar, regarding order structure, 
to the pattern. This similarity can be seen even more 
clearly if we consider natural representations of these 
strings (also shown in in Figure 1). These matches can 
be retrieved with δ=2 and γ=6.

The outline of the paper is as follows. In Section Preli-
minaries and problem definition, we present the preli-
minaries and define the δγ-order-preserving matching 
problem. Next, we present its solution in Section Al-
gorithm. We evaluate the efficiency of our algorithm 
in Section Experimental Results. Finally, conclusions are 
drawn in the last section.

Preliminaries and problem definition

A string is a sequence of zero or more symbols from an 
alphabet ∑; the string with zero symbols is denoted by 
ε. The cardinality of alphabet ∑, denoted by |∑|, is the 
number of characters in  ∑. The set of all strings over the 
alphabet ∑ is denoted by ∑*. Throughout the paper, we 
consider the numeric alphabet Σσ which is assumed to 
be an interval of integers from 1 to |∑|, i.e. Σσ={1,2,..,σ}= 
where |∑|=σ.  T=T1...n is a string of length n defined over 
Σσ. Ti is used to denote the i-th element of T, Ti..j is used as 
a notation for the substring Ti Ti+1..Tj of T, where 1 ≤ i ≤ j 
≤ n. Similarly, a pattern P = Pi..m is a string of length m de-
fined over Σσ. For easy notation, we use Ti to denote the 
length-m substring of T starting at position i; thus Ti = Ti..i+m-

1. Next, we present the definition of δγ-match and order-
preserving match for the string comparison problem. 

Definition 1: δγ—match: Let X = Xi..m and Y=Y1..m 
be two equal-length strings defined over Σσ. 
Also, let δ and γ be two given numbers (δ,γ ∈£). 
Strings X and Y are said to δγ-match, denoted as 
                                                              . Note that 
the operator       is conmutative. 
X Y iff X Y Y
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Example 1: There is a δγ-match, for δ=2 and γ=7, 
between the strings X=〈1,3,1,3,6,3,3,4,1,2〉 and 
Y=〈2,2,1,3,4,3,4,5,2,2〉 defined over Σ6 as |X-
Y|=〈1,1,0,0,2,0,1,1,1,0〉. Note that the maximum di-
fference between corresponding characters is 2 and 
takes place at the fifth position. Similarly, the sum of all 
differences is 7. 

Now, some important concepts for the definition of 
order-preserving match are introduced. Let X=X1..m be 
a string defined over Σσ. The rank of Xi in X is defined 
as RankX(i)=1+| {j ∶ Xj < Xi,1 ≤ j < i }|. Furthermore, the 
natural representation of X is nr(X)=Rankx (1)Rankx (2)…
Rankx (m). For simplicity of the description, we assu-
me that all the characters appear at most once in X; 
however, the extension to the general case is straight-
forward. For example, if X = 〈10,15,19,12,11,18,23,22〉, 
then nr(X) = 〈1,4,6,3,2,5,8,7〉.

Definition 2: Order-Preserving Match: Let X=X1..m and 
Y = Y1..m be two equal-length strings defined over Σσ. 
Strings X and Y are said to order-preserving match, de-
noted as X↭Y iff nr(X) = nr(Y).

Example 2: Given integer strings X = 〈10, 15, 19, 12, 
11, 18, 23, 22〉 and Y = 〈12,18,22,15,13,20,30,23〉, 
we conclude that X↭Y as nr(X) = nr(Y) = 〈1, 4, 6, 3, 
2, 5, 8, 7〉

Next, we define order-preserving match for the string 
comparison problem and then generalize it to the as-
sociated pattern matching problem.

Definition 3: δγ-order-preserving match: Let X = X1..m 

and Y=Y1..m be two equal-length strings defined over 
Σσ. Also, δ and γ be two given numbers (δ,γ ∈£). 
Strings X and Y are said to δγ-order-preserving match, 
denoted as X↭    , iff  nr(X)      nr(Y). Note that the ope-
rator ↭      is conmutative.

Example 3:  Given  δ =  2, γ = 6,  X =  〈10,15,19,12,11,18,23, 
22〉 and Y = 〈14,17,20,18,12,15,23,22〉, we conclu-
de that X↭  Y, as nr(X) = 〈1,4,6,3,2,5,8,7〉, nr(Y) = 
〈2,4,6,5,1,3,8,7〉 and nr(X)       nr(Y).

Problem 1: δγ-order-preserving matching: Let P = 
P1..m be a pattern string and T = T1..n  be a text string, 
both defined over Σσ. Also, let δ and γ be two given 
numbers (δ,γ ∈£). The δγ-order-preserving matching 
problem is to calculate the set of all indices i, 1 ≤ i ≤ 
n - m + 1, satisfying the condition P↭    Ti.

Algorithm

The input of the algorithm is the text T = T1..n and pat-
tern P = P1..m, both defined over integer alphabet Σσ, 

and the integer bounds δ,γ∈£. We begin by creating 
a linear list with the length-m substring that starts at 
position 1 of the text, i.e. T1; this list is denoted by 𝒯. 
Furthermore, we create a sorted linear, called 𝒮, with 
the same characters. Other two (unsorted) lists are 
created: 𝒯nr and 𝒫nr; they contain the natural represen-
tations of 𝒫 and 𝒯1, respectively. Then, the δγ- condi-
tions are evaluated: the maximum difference between 
corresponding characters of 𝒫nr and 𝒯nr is compared 
with δ and the sum of such differences is compared 
with γ. If there is a δγ-order-preserving match (see De-
finition 3), position 1 is reported. After this, the natural 
representation of the other text windows is compared 
with the natural representation of the pattern. Specifi-
cally, our strategy is updating 𝒯nr in O(m) time so that 
it contains the natural representation of the next text 
window to consider. 

Let us assume that 𝒯nr contains the natural representa-
tion of the text window Ti, for 1 ≤ i < n - m + 1. Then, 
in order to transform 𝒯nr so that it contains the natural 
representation of Ti+1, we update the ranks in 𝒯 that 
are greater than the rank of 𝒯1 (the element that must 
be removed from the text window) by reducing them 
in one unit; note that the ranks that are less than 𝒯1

nr 

remain the same. Then, we remove the element at the 
first position of 𝒯 and 𝒯nr. Also, the corresponding ele-
ment must be removed from 𝒮, but it may be in any 
position of the list as it is sorted. After this step, the new 
character in the text window, namely 𝒯i+m, is inserted 
at the end of 𝒯. It is also inserted in 𝒮 but at the correct 
position according to the order. Such position corres-
ponds to its rank in the text window, so it is added at 
the end of 𝒯nr. Finally, the ranks of the elements in the 
text window that are greater than or equal to 𝒯      are 
incremented in 1 due to the arrival of Ti+m.

The pseudocode of this algorithm, which we call δγ-
OPM, is presented in section Algorithm 1: δγ—OPM 
algorithm. The elements of the lists are indexed from 1 
to m. The methods of the lists are specified as follows: 

•	 add(x): For unsorted lists, X is inserted at the end of 
the list. For sorted lists, X is inserted in the correct 
position according to the order.

•	 remove(i): The i-th element is removed from the list.

•	 indexOf(x): It returns the index at which X occurs in 
the list.

The time complexity analysis of the algorithm is de-
rived as follows. Line 1 takes constant time. Lines 2 
and 4 take O(m log m) resulting from the sorting ope-
ration. The total cost of filling 𝒯 and 𝒮 is θ(m) as all of 
the insertions are done at the end of the lists (see line 
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3). Next, the operations within the loop of lines 5-12 
are analysed for a single iteration. Evaluating the δγ- 
conditions takes θ(m) time (see line 6). Updating the 
rankings of 𝒯nr takes θ(m) (see lines 7-8 and 11-12). 
Deletions from the first positions take constant time 
(see line 9). Even the removal from S can be done in 
constant time if we use doubly linked lists and keep 
pointers from the elements in 𝒯 to the corresponding 
elements in 𝒮. The insertions at the end of the list take 
O(1) (see line 10); however, the insertion in the sorted 
list 𝒯nr takes linear time to find the correct position 
according to the order if doubly linked lists are used. 
Notice that if arrays were used to represent the linear 
lists, it would cost O(log m) to find the correct position 
of an element; however, the movement entailed by an 
insertion or deletion increases this cost to O(m). 

Then, the total cost of the loop is O(nm) as the cost 
of each iteration is O(m) and there are O(n) iterations. 
Then, the total time complexity of δγ-OPM algorithm 
is O(nm + m log m). Since this is the first algorithm for 
the δγ-order-preserving matching problem, we com-
pare it with a naive algorithm. In particular, a naive 
algorithm would calculate the  natural representation 
of each text window and compare it with the natural 
representation of the pattern. Calculating the natural 
representation of each text window takes O(m log m) 
so the total time complexity is O(n m log m). The pro-
posed algorithm improves this complexity to O(nm+m 
log m). It is important to remark that further improve-
ments to this complexity are not easy to achieve since 
the updates on the considered text window may chan-
ge all the rankings in it. Specifically, the removal of an 
element and the insertion of a new element in the win-
dow may greatly change the rankings. Furthermore the 
alignment of the pattern changes. Thus, it is necessary 
to evaluate the δγ- condition, which takes O(m).

Algorithm 1: δγ—OPM algorithm 

Input: P = P1..m,T = T1..n, δ, γ, Σσ

Output: {i∈{1..n-m+1}: P ↭      Ti}

1. Create: 𝒯, 𝒯nr, 𝓟nr as Lists, and 𝒮 as a Sorted List.

2. W ← T1..m.sort()

3. for j = 1→ m do 𝒯.add(Tj ), 𝒮.add(Wj)

4. 𝒯nr ← calculateNR(T1..m) ), 𝓟nr ← calculateNR(P)

5. for j =1→ m do

6.  if isAMatch(𝓟nr, 𝒯nr, δ, γ) then report i

7. for j = 2→m do 

8.  if  𝒯j
nr < 𝒯1

nr  then 𝒯j
nr ← 𝒯j

nr –1

9. 𝒮.remove(𝒮.indexOf(𝒯nr)), 𝒯nr.remove(1),𝒯.remo-
ve(1)

10. 𝒮.add(𝒯i+m),𝒯.add(𝒯i+m),𝒯nr.add(𝒮.indexOf(Ti+m))

11. for j = 1→m –1 do

12.  if  𝒯j
nr ≥  𝒯m

nr then  𝒯j
nr ←  𝒯j

nr + 1 

13. if isAMatch(𝒫nr, 𝒯nr, δ, γ) then report n-m+11

Example 4: Given δ=2, γ=6, and strings P=〈14,17,20, 
18,12,15,23,22〉 and T = 〈9,10,15,19,12,11,18,23,22,26, 
7,14,16,21,17,13,20,25,24,8〉, defined over Σ30, the 
output of the δγ-order-preserving matching problem is 
{2,12} because P↭    T2 and P↭    T12 (see Figure 1). 
Notice that P↭    T2 was shown in Example 3 by ta-
king P as Y and T2 as X. On the other hand, P ↭  
T12 since T12 = 〈14,16,21,17,13,20,25,24〉, as nr(P) = 
〈1,4,6,3,2,5,8,7〉, nr(T12) = 〈2,3,6,4,1,5,8,7〉 and nr(X)     
     nr(Y). 

Experimental results

In this section, we describe the experimental setup we 
designed to evaluate the performance of the algorithm 
proposed. We compare it against the naive algorithm 
which processes each length-m text window separa-
tely. The time complexity of our solution is O(nm+m 
log m), while the time complexity of the naive algo-
rithm is O(nm log m). In this section, we experimentally 
verify these theoretical bounds. Particularly, in section 
Experimental setup we present the experimental fra-
mework, while we describe the data generation in 
Section Random data generation Then, in Section Ex-
perimental results and analysis, we discuss the results 
obtained.

Experimental setup: In section Hardware and soft-
ware, we describe the hardware and software used 
for the experiments. Then, we show how we vary the 
input parameters in Section Parameters.

•	 Hardware and software: Both algorithms, the nai-
ve algorithm and our solution, were implemented 
using C++. The computer used for the experiments 
was a Lenovo ThinkPad with a processor Intel(R) 
Core(TM) i7 4600u CPU @ 2.10GHz 2.69 GHz and 
installed RAM memory of 8GB. The computer was 
running 64-bit Linux Ubuntu 14.04.5 LTS. The C++ 
compiler version was g++ (Ubuntu 4.8.4-2ubun-
tu1~14.04.3) 4.8.4.

•	 Parameters: It is clear that the defined problem of 
Order Preserving Matching under δ and γ distances 
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has several parameters. They may change depen-
ding on the area of study in which the problem and 
pattern searching algorithms are applied. To show 
how our solution behaves with different configura-
tion of the given parameters, we perform five types 
of experiments. In each experiment, we vary one 

of the given parameters n,m,δ,γ and  ∑, and let the 
other four parameters fixed at a given value. For 
each experiment type, we performed five different 
experiments and took the median as the value to 
plot. The variation of the parameter values for each 
experiment type is presented in Table 1.

Table 1. Parameters of the Experiments.

Variable Varying n Varying m Varying δ Varying γ Varying σ

n
[500,10000] 

∆n=500
10000 10000 10000 10000

m 40
[5,100] 
∆m=5

40 40 40

δ 10 10
[0,38] 
∆δ=2

10 10

γ 60 60 60
[0,95] 
∆γ=5

60

σ 100 100 100 100
[2,40] 
∆σ=2

Random data generation: An experiment consists of 
two stages. The first stage is the pseudo-random ge-
neration of a text T of length n and the pattern P of 
length m. The second stage is the execution of both 
algorithms (naive and the proposed algorithm) on the 
generated strings P and T. The random generation of 
each character of both the pattern P and the text T is 
done by calling a function that pseudo-randomly se-
lects a number between 1 and Σσ with the same pro-
bability for each number to be selected.

Experimental results and analysis: The first result to 
highlight is the fact that, in every experiment, our solu-
tion has lower execution time than the naive solution. 
The results shown in Figure 2 and Figure 3 show that 
the size of the alphabet and the parameter γ have no 

Figure 2. Experimental results varying the size of the al-
phabet.

Figure 3. Experimental results varying ϒ.

Figure 4. Experimental results varying δ.
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impact on the execution time of any of the algorithms. 
The result shown in Figure 4 shows no effect of the 
parameter δ on the naive algorithm. However, incre-
asing δ yielded a small increase in the execution time 
of the experiments with our algorithm. That behavior 
motivated the setup of more experiments with varying 
values of the parameter δ; notwithstading, despite the 
small increase of the execution time in our algorithm,  
our solution outperformed the naive solution in all the 
experiments.

Figures 5 and Figure 6 verify the theoretical complexity 
analysis that states that n and m are the parameters 
that really determine the execution time of both algo-
rithms. In particular, the time complexity of the naive 
algorithm is O(nm log m) while ours is O(nm + m log 
m). 

In Figure 6, m is a constant and n is a variable while 
in Figure 5, n is a constant and m is a variable. Notice 
that, under these conditions, the graphs are expected 
to be linear and the experiments verify that. Morever, 
the log m extra factor of the naive algorithm's time 
complexity can be seen in the graphs as our solution 
always outperforms the naive solution in all the experi-
ments. This also applies to the cases where both n and 
m are constant (see Figure 2, Figure 3 and Figure 4).

Conclusions and future work

In this paper, we propose an approximate variant of 
order-preserving matching that permits an individual 
error between the ranking of corresponding charac-
ters, and a global error across all the positions. The 
former is bounded by δ and the latter by γ. We present 
a O(nm+m log m) algorithm to solve this new problem. 
We verified its efficiency through experimental results. 
In particular, we clearly showed that the proposed al-

gorithm outperforms the naive solution. To the best of 
our knowledge, it is the first approximate version of 
the problem that takes into account the magnitude of 
the rankings.

The question about the lower bound of an algorithm 
for the Order Preserving Matching under δ and γ dis-
tances remains open; it is left to see if there is an algo-
rithm of better asymptotic complexity than O(nm+m 
log m).
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