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Abstract

Based on prevalence and impact on public health, toxocariasis is an underestimated zoonosis in developing and developed 
countries.  The transmission of Toxocara spp. involves pets, stray dogs and cats (Canis familiaris and Felis catus, respecti-
vely), which spread the parasite’s eggs in their feces to the environment. One of the main risk factors for the infection and 
development of human toxocariasis, is to cohabit with puppies and kittens. For a long time, the preventive strategy for 
this parasitic infection has been the regular use of antiparasitic drugs to reduce parasite burden in the short term. A long 
lasting immunological protection can be achieved with vaccination, however, a vaccine is not yet available. Therefore, it is 
fundamental to know and to understand the state of the art of vaccine development for effective control of this zoonosis. 
This paper reviews the experimental studies focused on vaccine development for toxocariasis control, and special attention 
is given to relevant epidemiological studies on the importance of dogs in human toxocariasis.
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Resumen

Según la prevalencia y el impacto en la salud pública, la toxocariasis es una zoonosis subestimada en los países en desa-
rrollo y desarrollados. La transmisión de Toxocara spp. involucra animales de compañía caninos y felinos, como también 
perros y gatos sin hogar (Canis familiaris y Felis catus, respectivamente), que diseminan los huevos del parásito en sus heces 
al medio ambiente. Uno de los principales factores de riesgo para la infección y el desarrollo de la toxocariasis humana es 

Como Citar (Norma Vancouver): 
Jaramillo-Hernández DA, Salazar-G  LF,  Baquero MM, da Silva-Pinheiro C, Alcantara-Neves NM. Toxocariasis and Toxocara vaccine: a review. Orinoquia, 2020;24(2): 79-95 
DOI: https://doi.org/10.22579/20112629.622



80 ORINOQUIA - Universidad de los Llanos -Villavicencio, Meta. Colombia. 2020 Julio/Diciembre; 24(2): 79-95

Introduction

The World Health Organization (WHO) estimates that 
in Latin America 100 out of every 100,000 people 
are affected by at least one parasitic zoonosis (WHO, 
2017). Although their incidence and prevalence are 
high, zoonotic parasitosis such as toxocariasis, is 
among the five most neglected diseases in the world 
(CDC, 2014); and is generally associated with the pre-
sence of animals in human environments (Marques et 
al., 2012) respectively. The aim of this study was to 
assess the environmental contamination by Toxocara 
spp. eggs and hookworms (Ancylostoma spp.). Infec-
tion with Toxocara spp. occurs through the ingestion 
of embryonated eggs of Toxocara canis and T. cati eli-
minated by infected dogs and cats through their feces.  
Once the eggs reach the environment, they can infect 
a significant number of people, especially children, 
which increases the importance in public health to this 
parasitic disease (Jones et al., 2008). 

Companion animals represent potential reservoirs 
for Toxocara spp. to minimize the possible zoonotic 
transmission, the Companion Animal Parasite Council 
-CAPC- recommends deworming 15 day old puppies 
until six months of age with a broad-spectrum antipara-
sitic drug (CAPC, 2016). This recommendation is based 
on the epidemiological principle of a 100% probability 
of parasitosis due to Toxocara spp. in puppies due to 
the transplacental transmission of T. canis and the high 
level of environmental contamination by embryonated 
eggs (Lucio-Forster et al., 2016).

The global importance of parasitic diseases affecting 
humans and domestic animals, and the emergence 
of drug resistance (Köhler, 2001; Kopp et al., 2009; 
Bowman, 2012) promote the need for research to 
control parasitoses in companion animals and to re-
duce the exposure risks to humans and the develop-
ment of parasitic zoonotic diseases. The development 
of a vaccine to control toxocariasis in dogs will play 
a fundamental role in the global management of this 
disease (Gasser, 2013) and would strengthen conven-
tional anti-parasitic management schemes. This very 
much depends on the characteristics of such vaccine, 
like the duration and protection level, shelf-life, stora-
ge conditions, transport and the population to protect 
(Han, 2015). 

Importance of toxocariasis in public health

From the epidemiological and public health perspec-
tives, toxocariasis is an underestimated zoonosis, with 
difficult diagnosis, present in developing and develo-
ped countries (Torgerson and Budke, 2006; Lucio-Fors-
ter et al., 2016). It is a chronic disease composed of 
polymorphic clinical pictures, such as visceral larva mi-
grans syndrome (Beaver, 1962), ocular larva migrans 
syndrome (Schantz et al., 1979), neurotoxocariasis 
(Finsterer and Auer, 2007) and covert (or asympto-
matic) toxocariasis (Taylor et al., 1987; Taylor et al., 
1988). The causal agents of this zoonosis are ascaridid 
nematodes from the Toxocara genus: T. canis and T. 

convivir con cachorros felinos y caninos. Durante mucho tiempo, la estrategia preventiva para esta infección parasitaria ha 
sido el uso regular de medicamentos antiparasitarios para reducir la carga parasitaria a corto plazo. Se puede lograr una 
protección inmunológica duradera con la vacunación, sin embargo, todavía no se dispone de una vacuna. Por lo tanto, es 
fundamental conocer y comprender el estado del arte del desarrollo de vacunas para el control efectivo de esta zoonosis. 
Este artículo revisa los estudios experimentales centrados en el desarrollo de vacunas para el control de la toxocariasis, y 
se presta especial atención a los estudios epidemiológicos relevantes sobre la importancia de los caninos domésticos en 
la toxocariasis humana.

Palabras clave: toxocariasis, inmunoprofilaxis, inmunoterapia, vacuna, zoonosis.

Resumo

Com base na prevalência e no impacto na saúde pública, a toxocaríase é uma zoonose subestimada nos países em des-
envolvimento e desenvolvidos. A transmissão de Toxocara spp. envolve animais cães e gatos de estimação e vadios (Canis 
familiaris e Felis catus, respectivamente), que espalham os ovos do parasita nas fezes para o meio ambiente. Um dos prin-
cipais fatores de risco para a infecção e desenvolvimento da toxocaríase humana é coabitar com filhotes de cachorros e 
gatos. Por um longo tempo, a estratégia preventiva para essa infecção parasitária tem sido o uso regular de medicamentos 
antiparasitários para reduzir a carga parasitária a curto prazo. Uma proteção imunológica duradoura pode ser alcançada 
com a vacinação, no entanto, uma vacina ainda não está disponível. Portanto, é fundamental conhecer e entender o estado 
da arte do desenvolvimento de vacinas para o controle efetivo dessa zoonose. Este artigo revisa os estudos experimentais 
focados no desenvolvimento de vacinas para o controle da toxocaríase, e atenção especial é dada a estudos epidemioló-
gicos relevantes sobre a importância dos cães na toxocaríase humana.

Palavras-chave: toxocaríase, imunoprofilaxia, imunoterapia, vacina, zoonoses.
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cati mainly infecting domestic and stray dogs and cats 
(Overgaauw, 1997).

Toxocara genus is composed of several species and 
have a broad spectrum of definitive hosts and they are 
ubiquitous in urban, periurban and rural areas world-
wide. There are other Toxocara species that require 
epidemiological studies to determine their impact on 
public health because they could occasionally be sour-
ces of infection for humans. The definitive hosts for 
T. vitolorum, are domestic and wild ruminants, which 
excrete larvae through milk, increasing the risk of in-
fection, especially in rural areas of different countries 
where raw milk is ingested by people (Li et al., 2016). 
Another important species is T. pteropodis which is as-
sociated with bats and possible infection to domestic 
and synanthropic dogs (Prociv, 1989). It is believed 
that T. pteropodis is the causative agent of hepatitis-like 
disease in humans on Palm Island (Grenadines) (Moor-
house, 1982). In addition to these species T. tanuki, T. 
apodemi, T. lyncus, T. mackerrasae, T. paradoxura, T. 
sprenti and T. vajrasthirae, parasitize a variety of wild-
life and synanthropic mammalians (such as bats and 
rodents, among others) (Gasser et al., 2006); in addi-
tion T. malaysense that has domestic and stray cats as 
definitive hosts (Le et al., 2016). 

The female adult T. canis can oviposit up to 200,000 
non-embryonated eggs daily which will be excreted 
through the feces of the host. These eggs develop to 
their infectious stage (embryonated eggs - containing 
stage 2 or 3 larvae, called L2-L3 infective larvae) in 
the environment (carpet, garden, soil, food) and/or 
in the fur of companion animals (Jones et al., 2008). 
The main risk factor associated with the development 
of human toxocariasis is to cohabit with companion 
animals (Wolfe and Wright, 2003), specifically pup-
pies and kittens (Marmor et al., 1987; Lucio-forster et 
al., 2016).  Puppies and kittens share interior resting 
areas with humans (bed, dining room, swimming pool, 
among others) (Scheibeck et al., 2011), creating a si-
tuation of great relevance in public health (Kollipara 
et al., 2016). Puppies can develop congenital parasitic 
infections due to the transplacental migration of these 
parasites while both, puppies and kittens, can be in-
fected by ingestion of colostrum or breastmilk. These 
animals can become important disseminators of the 
nematode’s eggs when having large parasite loads in 
their intestine (Bowman, 2014). Humans and several 
animals are considered paratenic hosts  since the para-
sites larvae do not develop to the adults, but migrate 
through somatic tissues (i.e. muscle, eye, Central Ner-
vous System –CNS) (Figure 1) where they persist as an 
infectious stage L3 for extended periods. The presence 
of larvae in these tissues induces various pathological 

changes according to their migratory capacity through 
tissues and the immune responses of the host (Strube 
et al., 2013), both situations addressed below.  

The integral control of T. canis can be achieved by in-
terrupting different stages of its life cycle (Figure 1). 
The main strategy is to deworm domestic dogs, giving 
special attention to pregnant bitches and puppies un-
der 12 weeks of age.  The implementation of massive 
deworming baits is useful to treat stray dogs. The cha-
llenge for the future is to establish vaccinations sche-
mes to reduce and prevent the spread of eggs through 
feces into the environment (Hotez and Wilkins, 2009; 
Lee et al., 2014; Chen et al., 2018; Ma et al., 2018a).

The infection by T. canis is highly prevalent in the entire 
canine population that is not treated with anti-helmin-
tics on a regular basis, and its presence in synanthropic 
and wild species makes its elimination almost impossi-
ble (Bowman, 2014). The high prevalence of toxocaria-
sis can be explained by the hypobiosis of the parasite’s 
larval stage (L2-L3); larval viability has been found nine 
years after larvae have been encysted in non-human 
primate tissues. Furthermore, in the murine model, 
active migration has been identified after larval hypo-
biosis (Beaver, 1962). Concerning human toxocariasis, 
studies about its prevalence have been done in coun-
tries of Africa, Asia, South America and specifically 
the United States, showing prevalence ranging from 
5.1% up to 93% (Figure 2) (Buitrago and Gast-Galvis, 
1965; Mendonça et al., 2012; Schoenardie et al., 2013; 
Macpherson, 2013; Cong et al., 2014; Moreira et al., 
2014; Berrett et al., 2017; Sowemimo et al., 2017).

Deworming domestic dogs is one of the main strate-
gies to control world-wide toxocariasis, based on the 
fact that a significant number of families have dogs 
and they are a source of dissemination of viable T. 
canis eggs through their feces (Alcantara-Neves et. al., 
1989). Furthermore they may have L2-L3 in their coat 
(fur) (Holland, 2017). Thus playing a preponderant role 
as a risk factor for exposure and infection with T. ca-
nis in humans (Regis et al., 2011; Strube et al., 2013; 
Sowemimo et al., 2017).  The prevalence of this infec-
tion in the canine population is found in figure 3. The 
prevalence of canine toxocariasis ranges from 1.4% to 
82.4% based on serodiagnosis and fecal exam.  The 
real prevalence of canine toxorariasis is impossible 
to determine with the available information because 
most studies use different diagnostic methods, inclu-
sion and excusion criteria; however, these studies are 
useful to show the epidemiological importance of ca-
nine toxocariasis in the world. 
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Figure 1. Biological cycle of Toxocara canis. A and B. Adult parasites are present in the intestine of domestic dogs (definitive host) 
which shed non-embryonated eggs through their feces. In the environment, they embryonate and become infective at tempera-
tures of 25-30°C and a relative humidity of 85–95%. The development of the larval infective stage (L2-L3) within the egg requires 
9–15 days. The main route of infection with embryonated eggs is the oral route. In the intestine, L2-L3 hatch and penetrate the 
intestinal wall, taking different actions related to the age of the infected dog. In younger dogs, L2-L3 migrate through the liver, 
kidneys, lungs and trachea, and then are swallowed to reach the small intestine. Once in the lumen of the small intestine, the 
larvae develop to the fourth (L4) and fifth (L5) larval stages.  Finally, they reach the adult stage when after differentiation into 
male or female, for  subsequent oviposition by the females (prepatent period 4-5 weeks). In dogs older than three months of age, 
after oral exposure and initiation of migration through the enterohepatic circulation, L2-L3 tends to encyst in various tissues (i.e. 
liver, skeletal muscle) where they enter a state of hypobiosis.  C. In pregnant bitches during the last third of pregnancy, hypobiotic 
larvae are activated through hormone receptors associated with pregnancy (i.e. prolactin, progesterone), thus developing vertical 
infection (transplancental) or transmammary infection to neonates.  C1. A highly infected puppy can excrete L2-L3 in the emetic 
content and the bitch can get infected when cleaning the vomited material from the puppies. D. The parasite can also complete 
their life stage and spreading to the environment through synanthropic and wild canids. These definitive hosts may directly acqui-
re the infection by consuming of embryonated eggs from the environment (i.e. water sources) or predating previously infected 
paratenic hosts. E. Other unconventional hosts (i.e. wild and domestic feline species) may be associated with the life cycle of T. 
canis and its spread in the environment, but more research is required to determine the certainty of their active participation in this 
process. F. T. canis can be accidentally transmitted to other paratenic hosts (i.e. poultry, rabbits), which may ingest embryonated 
eggs from the environment. In these paratenic hosts the larvae migrate and form tissue cysts. G. Domestic, synanthropic or wild 
canids can prey on an infected paratenic host. In this case, the infective tissue encysted larva will complete its life cycle in the 
predator's small intestine.  G1 and H1. Occasionally, the infection can be transmitted by passive vectors such as synanthropic flies. 
H. Humans are considered paratenic hosts and can become infected through the consumption of larvae from a paratenic host 
such as birds. I. The ingestion of embryonated eggs from the environment  (e.g. geophagy). J. The dog’s fur can be contaminated 
with embryonated eggs acquired from the environment, being a possible source of infection for humans. After egg ingestion they 
behave similarly as in the other paratenic hosts with two determined larval migration phases: 1. Hepato-pulmonary phase, and 2. 
Myotropic-neurotropic phase. Encysted hypobiotic larvae will induce granuloma formation as a result of the host’s inflammatory 
response associated with the various toxocariasis syndromes.
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Most of T. canis infections are asymptomatic; even 
though, the parasite triggers the host’s immune res-
ponse. Nematodes can exert the host’s immune res-
ponses to preserve its parasitic capacity.  Shiny et al., 
(2011) reported high levels of regulatory/anti-inflam-
matory cytokines such as IL-10 and TGF-β between 
Wolbachia symbiotic phenomena with filariasis.  La-
yland et al., (2013) found a significant recruitment of 
regulatory T cells CD4+Foxp3+ and the suppression 
of airway inflammation in a model of allergy in Schis-
tosoma mansoni infected mice.  Likewise Du et al., 
(2014) demonstrated that the excreted-secreted anti-
gens from the Trichinella spiralis nematode inhibited 
the production of pro-inflammatory cytokines from 
classically activated macrophages (M1).  The gastroin-
testinal nematode Trichuris muris can share epitopes 
of IFN-γ in the murine model, thus modulating chronic 
infectious processes by inducing changes in lymphoid 
cells (Grencis and Entwistle, 1997).  In the same ex-
perimental model, it was shown that some secreted 
proteins of T. muris bind to Toll-like receptor 4 (TLR-
4), activating MyD88 (essential part of middosome in 
the activation of inflamassome), downregulating Th2 

Moreover, other research has confirmed the impor-
tance of dogs in the dissemination of T. canis through 
their fur. In Ireland, Wolfe and Wright (2003) found 
that 15/60 dogs had viable eggs in their fur, where 
approximately 4.2% of these eggs were embryonated 
and 23.9% in the embryonation process.  This study 
found 20 embryonated eggs/gram of dog hair. Rod-
die et al., (2008) examined the fur of 100 dogs, fin-
ding 67% of samples contaminated with viable T. canis 
eggs. Another study found 21.56% of viable eggs on 
the fur of 51 dogs, in which 21% of those viable eggs 
were embryonated or in embryonation process, with 
an average fur contamination of 8.45 embryonated 
eggs/gram of dog hair (Aydenizöz Ozkayhan et al., 
2008). Furthermore, a recent study with a sample of 
100 dogs, found that 14% of the samples were conta-
minated with viable eggs, with an average of 136 eggs 
per sample (Öge et al., 2014). In Brazil, Merigueti et al., 
(2017) reported a presence of 6.67% fur contamina-
ted with T. canis eggs in a sample of 165 dogs, with an 
average of 12.2 embryonated eggs/gram of dog hair. 

Figure 2. Several prevalence studies of T. canis infection in human population and epidemiological association with the presence 
of dogs. OR. Odds Ratio, CI. Confidence Interval.
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tion (Hewitson et al., 2009). The acute inflammatory 
reaction is the result mainly of the innate immunity to 
the excreted-secreted antigens of the infective T. ca-
nis larvae (TES), which include more than 50 different 
macromolecules represented by a relatively simple set 
of glycoproteins, consisting of three gene families: 1) 
mucins (high molecular weight glycosylated proteins, 
between 120 and 40–45 kDa); 2) C-type lectins (sugar-
bound proteins, whose molecular weights are around 
70 and 32 kDa) (Maizels, 2006) and 3) other prote-
ins that vary between 26 and 55 kDa (Maizels and 
Loukas, 2001). Mucins vary in number and volume 
(Loukas et al., 2000a) which are strongly glycosylated 
with galactose linked to O- and N-acetylgalactosamine 
groups (Meghji and Maizels, 1984). Apparently, this 
glycosylation capacity is related to the Th2 immune res-
ponse and these molecules are specific targets for IgM 
(Schabussova et al., 2007). Furthermore, the larvae of 
T. canis periodically change their cuticle, releasing ma-
cromolecules to the host’s blood circulation, hindering 
the action of specific anti-Toxocara antibodies which 
do not affect the parasite. This biological action is one 
of the forms of evasion of the host immune response 
and survival of this nematode inside their hosts’ bodies 
(Loukas et al., 2000b; Schabussova et al., 2007).

TES and somatic antigens, from the worm surface 
(hidden antigens) when used as vaccine, can bind to 
pattern recognition receptors (PRRs) such as TLRs and 
C-type lectin Receptors (CTLs) expressed on the cell 

responses and allowing chronic infection (Helmby and 
Grencis, 2003). 

Specifically, for T. canis infection in children, a positive 
correlation was found between eosinophilia, IgE and 
sIgE levels (IgE specific for aeroallergens); a decreased 
cutaneous hypersensitivity for aeroallergens (Men-
donça et al., 2012) and increased IL-10 production by 
blood cells (Alcantara-Neves et al., 2014). These condi-
tions are the result of the interactions of T. canis and its 
hosts, altering the response to vaccination in children 
and predisposing to co-infections (Maizels and Mcsor-
ley, 2016; Santos et al., 2017). Cooper et al., (2001) 
showed the potential modulation of immune respon-
ses by geohelminth like A. lumbricoides. After vacci-
nation against cholera, the immune responses were 
effective in children that were treated with albendazol 
compared with children that received a placebo. On 
the other hand, significant interference has also been 
reported in antibody titration of puppies previously 
diagnosed with toxocariasis after receiving the rabies 
vaccine (Mojžišová et al., 2007).

Immune responses to infection with T. canis and 
creation of vaccines for the control of toxocariasis

Host immune responses to gastrointestinal helminth in-
fection in general, cause a Th2-type immune response 
that in most cases make the host susceptible to reinfec-

Figure 3. Several prevalence studies of T. canis infection in canine populations.
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antigens for the control of gastrointestinal parasites. 
The limitation in the efficient development of vaccines 
against parasitic agents may be associated with the key 
roles that co-evolution and adaptation have played in the 
host-parasite relationship (Smith and Zarlenga, 2006). 
The different studies performed until now to evaluate 
vaccine proposals for the control of toxocariasis are 
summarized in Table 1, starting from the processes 
where embryonated parasite eggs exposed to ultravio-
let radiation were used as the first approach to experi-
mentation in dogs.

Reverse vaccinology and new generation adjuvants  
as a strategy for vaccine development in the control 
of T. canis infection

Advances in development computational software and 
discoveries of molecular functionality in modern bio-
logy have provided important opportunities to inves-
tigate epidemiological, diagnosis and even prophylaxy 
of Toxocara spp. (Ma et al., 2019). The clearest exam-
ple of these applied cognitive development processes 
refers to genomic technologies of this parasite (Mar-
dis, 2008, Ma et al., 2018b). The principle of reverse 
vaccinology starts from the genome sequence of the 
pathogen of interest and bioinformatics analysis, pre-
dicting those antigens that could be good candidates 
vaccine development, without the need to grow the 
specific organism to obtain natural antigens. The geno-
me sequence provides a catalogue of virtually all pro-
teic antigens that the pathogen eventually expresses.  
Furthermore, it is possible to generate new antigens 
(such as chimeric molecules), establishing new para-
digms in immunodiagnosis or immunoprophylaxis for 
the infectious diseases control (Rappuoli, 2000; Mora 
et al., 2003; Sette and Rappuoli, 2010; Del Tordello et 
al., 2017).

There are several online databases for different im-
portant human and animal parasites (i.e. NEMBASE 
http://www.nematodes.org/nembase4, Nematode.net 
http://nematode.net, WormBase ParaSite http://para-
site.wormbase.org/) that may be useful in the develop-
ment of reverse vaccinology. In the case of T. canis the 
crucial point for the development of studies at this le-
vel is the completion of the T. canis genome project, in 
which Zhu et al., (2015) reported a genome size of 317 
Mb. Recent studies led by Zhou et al., (2017) explored 
the details about the molecular biological processes 
of this nematode using high-performance transcripto-
mic sequencing of the 18,596 genes of the adult T. 
canis and bioinformatic analysis to explore aspects of 
reproduction and biological development of this para-
site. Sperotto et al., (2017) developed the proteomic 

membrane of enterocytes and other cells exposed 
to these TES and somatic antigens (SA) during migra-
tion and larval development (i.e. dendritic cells –DCs, 
macrophages) (Van Kooyk and Geijtenbeek, 2003). 
After binding with TLRs and CLRs, intracellularly, the 
middosome (MyD88, IRAK4 and IRAK2) activates the 
signatosome (IKKƔ, IKKα and IKKβ) and via nuclear 
factor NF-ĸB activates the inflammasome (e.i. NLRP3) 
and causes the production of the proinflammatory 
cytokines IL-1β and IL-18 (Gordon, 2002). There is also 
recruitment of various leukocytes such as neutrophils, 
monocytes, eosinophils, CD8+ T cells, basophils and 
DCs, the latter being in charge of antigen presenta-
tion and beginning of the adaptive immune response. 
Likewise, a Th2 type response characterized by the se-
cretion of cytokines such as IL-4, IL-5 and IL-13 from 
CD4+ T cells and innate lymphoid cells (Smith et al., 
2012). Particularly, IL-4 promotes the differentiation of 
B cells and antibody class-switching. In addition, IL-5 
promotes the differentiation of eosinophils, and eo-
sinophilia is a notable characteristic of Toxocara spp. 
infection (Beaver, 1962; Neill et al., 2010).

It is essential to establish integrated control guidelines 
(Magnaval et al., 2001), in which vaccination to con-
trol this parasitic disease in dogs would be the main 
action against the infection in several paratenic hosts 
including humans (Despommier, 2003; Gasser, 2013; 
Maizels, 2013). The development of vaccines for con-
trol and prevention of diseases caused by nematode 
has been restricted, and only some studies have shown 
positive results (González-Hernández et al., 2016).  As 
example, the protection that can be induced with natu-
ral antigens derived from the intestine of Haemonchus 
contortus, an important gastrointestinal nematode 
affecting sheep and goats (Newton and Munn, 1999). 
However, other parasites present greater challenges 
for the identification of vaccine candidate proteins 
(Hewitson and Maizels, 2014). An important obstacle, 
even with successful natural antigens, has been the 
development of effective synthetic or recombinant va-
ccines.  Gauci et al., (2008) successfully tested recom-
binant antigens identified in Taenia multiceps, a worm 
in sheep, where its oncosphere antigens associated 
with the QuilA® adjuvant significantly decreased the 
central nervous system parasite cysts. From immu-
noproteomic studies of Teladorsagia circumcincta, a 
gastrointestinal nematode of small ruminants, eight re-
combinant proteins were obtained and combined with 
the adjuvant QuilA®, getting 90% drop in fecal egg 
count for more than a year, and significant post-mor-
tem reduction in the adult count in the gastrointestinal 
tract (Nisbet et al., 2013). These are some examples 
of success in the development of recombinant protein 
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Table 1. Overview of published investigations of vaccine candidates and adjuvant for the control of toxocariasis

Experimental 
model

Experimental vaccine/adjuvant Result Ref.

Albino mice, 
Yale Swiss strain.

1 mg (first doses) and 2 mg 
(second doses) of T. canis: 
A) Embryonated eggs extract + 
Freund’s complete adjuvant (FCA)
B) Adult extract + FCA
C) Adult extract supernatant +  FCA

Found to harbor significantly fewer larvae 
postmortem tissues after a challenge 
infection than did controls in the A and C 
groups (p<0.05) and B group (p<0.001).

(Izzat and 
Olson, 1970)

CBA mice TES T. canis (1µg) + FCA
Brain larvae recovery after 6 weeks of 
immunization 47.8 ± 25.2 Vs control group 
107.8 ± 24.1 (p<0.05, Wilconxon test).

(Nicholas,  
et al., 1984)

BALB/cJ mice

 – Soluble extracts of embryonated 
eggs and adult extract of T. canis, 
1.2 mg IP (first dose) and 200 µg 
IM (second dose).

 – Cell 2x106 IP or 0.125 mL of 
serum/15 g BW (from mice 
infected with T. canis).

There was no significant difference in the 
larvae found in the different organs of the 
animals inoculated with the extracts of 
T. canis. The group of animals inoculated 
with cells and blood serum from animals 
previously infected with T. canis (transfer of 
resistance) produced a significant decrease 
(p <0.05) in total observed larvae.

(Concepcion, 
and Barriga, 
1985)

Mice

X-ray (0-320 Krad) or of 
gamma ray (0-6 Mrad) 
irradiated eggs containing 
second-stage T. canis larva.

No visceral larval migration was observed in 
mice inoculated with 1 Mrad-irradiated eggs.

(Kamiya  
et al., 1987)

Mice
Embryonated eggs T. canis 
extract  + LPS E. coli o + FCA

Reduction in the number of larvae 
obtained post-mortem, extract 36%, LPS 
+ extract 70% and extract + FCA 66%.

(Barriga, 1988)

NIH and 
CD1 mice

 – Irradiated embryonated eggs UV 
(350 nm) 400 eggs T. canis PO

 – TES T. canis (8 mg IP)

24% fewer larvae obtained post-mortem 
in organs such as brain and muscle, 
but retained in the liver (p<0.05).

(Abo-Shehada 
et al., 1991)

Outbred strain 
of white mice

 – Eggs contain (PO), Adult extract, 
adult TES, larval extract, larval TES 
and perienteric fliud from adult 
(SC – IM) of T. vitolorum.

Significant reduction (p <0.001) of the 
number of larvae observed in different 
tissues with perienteric fluid from adults 
(100% protection) and TES from infective 
larvae (> 92% protection) of T. vitulorum.

(Amerasinghe 
et al., 1992)

IL-5 transgenic 
mice (Tg) and 
no transgenic 
mice C3H/HeN 

TES T. canis (10 mg) + FCA

 – Absorbance (492 µm) IgG, vaccinated 
group Tg 0.8 and C3H/HeN 0.9 Vs control 
group Tg 0.15 and C3H/HeN 0.14.

 – Counting of eosinophils, vaccinated group 
8100 ±1600/mm3 Vs no vaccinated group  
7900 ±1200/mm3.

 – Number of post-mortem larvae without 
significant differences (p>0.05).

(Sugane  
et al., 1996)

Mice
Glucan adjuvant (0.5 mg/
Kg IM) + Ig + Zn

Marked cell proliferation, important level 
of circulating anti-Toxocara antibodies and 
notorious decrease of larvae T. canis obtained 
post-mortem from the muscle and brain.

(Soltys  
et al., 1996)

ICR mice
T. canis eggs exposed ozone 5.91 
and 6.76 mg/L (2000 eggs PO)

No significant difference in the number 
of larvae recovered between ozone 
treated and no-treated groups. 

(Ooi et al., 
1997)
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Experimental 
model

Experimental vaccine/adjuvant Result Ref.

C57BL6 mice
Muramyldipeptide 
Adjuvant 4mg/Kg IP

Stimulation of the phagocytic activity of 
PMN, metabolic activity of macrophages and 
lymphocyte proliferation. Reduction in 30.6% 
of larval T. canis migration to different organs.

(Dvoroznáková 
et al., 1999)

C57BL6 mice
 – TES T. canis (30 µg) + Freund’s 

Incomplete Adjuvant (FIA)

When comparing the immunized 
group Vs control group

 – Greater proliferative response of T and B 
lymphocytes (p <0.01).

 – Lower number of CD8
+
 and CD4

+
 

lymphocytes (p <0.01).
 – Higher concentration of IgG1 and IgG2.

(Dvorožňáková 
et al., 2000)

C57BL6 mice
 – TES T. canis 32, 55, 70  and 120 

kDa (30 µg) + FIA
 – Somatic antigen

Protective effect of 52.1% in brain migration 
and 29% in skeletal striated muscle tissue.

(Dvorožňáko 
et al., 2002)

BALB/c mice

DNA vector plasmid (pcDNA3-
CpG) and Plasmid expressing 
murine IL-12 (pcDNA-IL-12) (1 µg) 
+ adjuvant micro particles of gold 
(1.5 µm). Percutaneous route.

 – pcDNA-IL-12 group presented less 
eosinophilic persistence in blood, broncho-
alveolar fluid and lung.

 – pcDNA3-CpG group prevented hyperres-
ponsiveness of the via area to T. canis 
infection.

 – Important level of anti-T canis IgG, where 
subclass IgG1 was the most important in 
both groups.

(Malheiro  
et al., 2008)

Balb/c mice

T. canis hatching liquid (first 
dose 0.3 ml of 1000 egg 
supernatant, 21 days then 0.15 
ml of 500 egg supernatant)

Reduction of number of T. cati larvae 
obtained post-mortem (liver, lung, muscle) 
compared with the control group: 65.34% 
SC, 56.25% IM and 68.18% IP.
Reduction of the number of T. leonina 
larvae obtained after death (liver, lung, 
muscle) compared to the control group: 
67.34% SC, 66.83% IM and 61.22% IP.

(Hosin and Al- 
Kubaysi, 2008)

Swiss mice
Saccharomyces boulardii 
(probiotic) 107 CFU/g of food

36.7% reduction in the recovery 
of post-mortem larvae of T. canis in 
several tissues (p = 0.0002).

(de Avila  
et al., 2012)

Albino rats
T. vitolorum eggs exposed 
to 600Gy and 800Gy ƴ 
radiations (1500 eggs PO) 

The histopathological changes caused 
by infection with T. vitulorum decreased 
by increasing the dose of irradiation of 
the infected stage, radiation exposure 
attenuated the larval migration from 
the gastrointestinal tract to liver.

(El-Kabany, 
2013)

Albino rats
800 Gy and 600 Gy irradiated 
T. canis eggs (2500 eggs PO)

Glutathione peroxidase activity in kidney 
tissues (U/gHb): 25.78±0.4 control 
group; 26.3±0.1 600 Gy group and 
29.14±0.2 800 Gy group (p<0.05).
Superoxide dismutase activities in 
kidney tissues (U/gHb): 3.82±0.1 control 
group; 5.13±0.1 600 Gy group and 
5.40±0.2 800 Gy group (p<0.05).
800 Gy group ameliorated the 
biochemical, haematological and 
histopathological of renal toxocariasis.

(Moawad  
et al., 2015)
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Experimental 
model

Experimental vaccine/adjuvant Result Ref.

Albino rats

 – Gamma radiation-attenuated em-
bryonated egg T. canis (800 eggs 
PO)

 – Essential oil of the Thymus 
vulgaris - Thyme (42.5 mg/kg PO)

Toxocara canis larvae counts in brain 
tissue, % of recovered larvae: 38.4% 
control group; 8.4% Gamma eggs group 
and 14% Thyme group (p<0.05).
Nitric oxide levels (µmol/L) in rats 
brain cells: 37.9 ± 0.8 control group; 
23.3±0.2 Gamma eggs group and 
26.5±0.2 Thyme group (p<0.05).
Gamma eggs and Thyme group improvement 
in the histopathological lesions and 
DNA fragmentations as well as damage 
in brain tissues Vs control group. 

(Amin  
et al., 2016)

Mixed-breed dog
TES (36 µg) T. canis + 
FCA + Al(OH)3 IM

Considerable decrease in the 
counting eggs per gram of feces.

(Martín  
et al., 2016)

Albino rats

 – Toxocara eggs exposed
 – to 800Gy ƴ radiations (PO)
 – Essential oil of Thymus vulgaris 

(42.5 mg/kg BW PO).

Vaccination with eggs attenuated by 
radiation and T. vulgaris oil significantly 
reduced, in comparison with the 
control group, the histopathological, 
histochemical and immunohistochemical 
changes in testicular parenchyma.

(Hafez et 
al., 2019)

SC: subcutaneous, PO: oral, IP: intraperitoneal, IM: intramuscular, BW: body weight 

analysis of TES proteins using liquid chromatography-
tandem mass spectrometry, identifying 19 proteins 
from the parasite’s genome. More detailed studies in 
proteomics developed by our research team (da Silva 
et al., 2018) have identified 582 proteins from larval ex-
tract and 64 proteins in TES. In this study we identified 
proteins that include immunomodulatory molecules in-
volved in the evasion mechanisms and those that may 
be involved in pathogenicity. Some of these proteins 
have potential for the development of immunotherapy 
and immunodiagnosis. Based on these studies a series 
of proteins of immunological interest have been identi-
fied as vaccines candidates using reverse vaccinology. 
Some of these proteins include: A) TES-32 - a secreted 
protein that shows similarity with C-type lectins present 
in mammalian immune cells in the pathogen response 
process, molecular weight 32 KDa and composed of 
219 amino acids (aa) (Maizels et al., 2000), B) TES-26  
(Tc-PEB-1) - Phosphatidylethanolamine-bound protein, 
composed of 262 aa and a molecular weight of 26 
KDa (Gems et al., 1995), C) TES-120 (Tc-MUC-3) - mu-
cin-3 composed of 269 aa and a molecular weight of 
45 KDa (Loukas et al., 2000a) and D) TES-70 (Tc-CTL-4) 
- C-type Lectin-4 composed of 288 aa and a molecu-
lar weight 70 KDa, identified as an important canine 
cell surface ligation protein (Loukas et al., 2000b). TES 
and somatic proteins from the worms’ surfaces are 

potential vaccine candidates because of their ability 
to generate a specific antibody response. However, 
their potency and efficiency of immune system stimu-
lation is controversial (Soltys et al., 1996; Munn, 1997; 
Dvorožňáková et al., 2000; Dvorožňáko et al., 2002).

Vaccines are preparations used to stimulate humoral 
and cellular immunity against a specific pathogen, 
and are prepared using a harmless form such as the 
attenuated organisms or their recombinant proteins 
(Hewitson and Maizels, 2014; Han, 2015). To achieve 
its maximum immunogenic potential, it is strictly ne-
cessary to use adjuvants (Chan and Gack, 2016). Adju-
vants exert their function by increasing the efficacy of 
antigens through the stimulation of the innate immune 
system, directly by stimulating DCs, macrophages and 
neutrophils, which lead to the activation of the adap-
tive immune system (Bonam et al., 2017). Nowadays, 
the use of adjuvants in vaccination seeks to direct the 
response of the adaptive immune system to the ino-
culated antigen (Reed et al., 2016), an action called 
“adjuvant effect”. This effect is the administration of an 
antigen with a specific microbial, among other com-
pounds with biological activity, to enhance a specific 
immune response to the antigen. The microbial com-
ponents of the adjuvants activate antigen presenting 
cells (APC) to produce pro-inflammatory cytokines and 
to upregulate the essential molecules for antigen pre-
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sentation. An example of these molecules is the major 
histocompatibility complex (MHC) class II and B7-1/2 
(CD80/CD86, co-stimulatory signaling of B lympho-
cytes and mononuclear phagocytes). This adjuvant 
effect allows a more effective antigen presentation, 
resulting in activation and clonal expansion of T cells 
(O’Hagan and Valiante, 2003).

There are several adjuvants that can provide greater 
potency and efficacy of T. canis TES and surface so-
matic antigens, such as imidazoquinolines (Th1 immu-
ne response adjuvants) which activate TLR7 and TLR8 
(single stranded RNA receptors). After imidazoquino-
lines bind to these TLRs, transcription factors initiate 
transcription of multiple pro-inflammatory cytokines 
such as IL-17, which plays an important role in cellular 
immunity, particularly in infection-responsive immune 
response (Ma et al., 2010). Thus, after stimulation with 
this adjuvant there is a general increase in IL-17 produ-
cing thymocytes, which are relevant cells in the respon-
se to infectious pathogens and tumors (Cho and Celis, 
2009). Allthough a classic adjuvant is aluminum hydro-
xide (Th2 immune response adjuvant), the mechanisms 
of its immunomodulation are still not completely elu-
cidated. HogenEsch (2002) summarized the possible 
activities of aluminum salts as modulators of the im-
mune responses by stimulating directly and indirectly 
dendritic cells and complement activation.  Other 
studies have found induction of chemokine secretion 
(Ulanova et al., 2001). It has also been shown that alu-
minum salts develop inflammasome responses (e.g. 
NALP3) and IL-1β secretion (Eisenbarth et al., 2008). 
Recently, there are new adjuvants capable of stimula-
ting a balanced Th1/Th2 responses, which is beneficial 
for immunoprophylaxis of helminthiasis (Diemert et al., 
2018). One of these is the purified fraction of saponins 
(triterpenoid glucoside) extracted from the bark of the 
Quillaja saponaria, a Molina tree. In addition to its use 
as a surfactant, it is also used in a pseudo-ternary sys-
tem with cholesterol and phospholipid to form colloi-
dal structures known as ISCOM (immunostimulating 
complexes) (Kensil, 1996). These saponins generate a 
strong response to T cell dependent and non-depen-
dent antigens (Petrovsky and Aguilar, 2004). They also 
induce cytotoxic CD8+ T cell proliferation and respon-
se (Newman et al., 1992) and enhance the response to 
mucosal antigens (Singh and O’Hagan, 2003). Another 
example of these new adjuvants is the AS01, which 
is composed of liposomes containing two immunosti-
mulants: 3-O-deacyl-4’-monophosphoryl lipid A (MPL) 
and QS-21. MPL is a non-toxic LPS-derived compound 
from Salmonella minnesota and QS-21 is a saponin ex-
tracted from Q. saponaria (Didierlaurent et al., 2016). 
They act as agonists and synergistically bind to TLR4 

inducing resident NK cells and CD8+ T cells to release 
IFN-γ into the regional lymph node, activate the ma-
crophages and IL-12 and IL-18 secretion, hours after 
AS01 application (Marty-Roix et al., 2016 ). 

Other adjuvants that  may provide greater potency 
and efficacy of the T. canis TES and surface somatic 
antigens are the synthetic TLR1/TLR2 (Th1 immune 
response adjuvants) agonists such as triacylated li-
popeptides which include Pam3CSK4, a molecule 
that mimics the acylated amino terminus of bacterial 
lipopeptides, and has the ability to bind to different 
receptors. TLR activating pro-inflammatory transcrip-
tional factors such as NF-κB and modulating both ce-
llular and humoral immune responses (Steinhagen et 
al., 2011). The immunogenic effect of Pam3CSK4 is 
underpinned by its ability to negatively regulates IL-13 
and IL-10 responses (Pratti et al., 2016) and to lead 
Th1 immune response-based production of IFN-γ and 
TNF-α (Martínez-Orellana et al., 2017). In addition, Liu 
et al., (2013) showed that intravenous administrations 
of TLR-1/-2 ligands were able to activate the MyD88 
signaling pathway and promote T cell differentiation 
through IL-12 secretion. 

Final consideration

Finally, it is important to clarify the emerging role of do-
mestic cats in toxocariasis, recent studies have shown 
that domestic cats are a significant source of T. cati 
eggs for the environment, having a possible prepon-
derant role within this zoonosis (Lucio-Forster et al, 
2016). From the epidemiological perspective, conven-
tional diagnostic tests (serodiagnosis using anti-IgG-
TES, parasitological tests in feces) do not differentiate 
infectious agents that cause toxocariasis in animals or 
people (de Savigny et al., 1979; Zhu et al., 1998, Al-
cântara -Neves et al., 2008) generating a dismissal of T. 
cati as a causative agent of human and animal clinical 
toxocariasis (Fisher, 2003). Although there are specific 
diagnostic, methods such as PCR using the second in-
ternal transcribed spacer (ITS-2) of the ribosomal DNA 
of T. canis, T. cati and Toxascaris leonina (Jacobs et al., 
1997) they are used only in research. Other serodiag-
nostic tests such as ELISA , excretory-secretory antigen 
(ES Ag) from T. cati larvae for the diagnosis of human 
toxocariasis caused by T. cati (Petithory and Beddock, 
1997) and Western blot using T. canis and T. cati ES 
Ag (Poulsen et al., 2015) have generated controversial 
results (i.e. cross reaction). It is possible that the cross 
reaction between T. canis and T. cati in seodiagnostics 
techniques is due to a) their somatic protein and TES 
homologues (Kennedy et al., 1987; Zahabiun et al., 
2015); b) the low intraspecific variation between the-
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se helminths of different geographical regions (Zhu et 
al., 2000; Fogt-Wyrwas et al., 2013) and c) cross protec-
tion between T. cati and T. canis (Hosin and Al-Kubaysi, 
2008). These actions could allow a single immunothera-
peutic development to be able to control the two most 
important parasitic agents of this zoonosis in the world. 

Conclusion

Toxocariasis is a disease that must be controlled in 
domestic and stray dogs and cats. This disease has a 
direct relationship with humans and has a potential 
zoonotic connotation. Among the control strategies, 
vaccination plays a major role by altering the parasi-
tic cycle (i.e. vertical transmission: transplacental and 
transmammary infection) or significantly reducing the 
viability of eggs and their environmental concentration, 
consequently reducing the possibility of human infec-
tion. Given all the important advances in the molecular 
characterization of T. canis (transcriptomics, proteo-
mics and genomics), and the identification of vaccine 
candidate proteins, reverse vaccinology is a potential 
strategy for the development of immunoprophylactic 
compounds. These studies would allow the generation 
of new vaccine antigens that can be enhanced by the 
use of the latest generation of adjuvants, thus creating 
one of the fundamental pillars in the integrated control 
of one of the most important neglected zoonotic pa-
rasitic disease that affects the poor human populations 
in the world.
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