Semigrupos cuánticos de Markov: pasado, presente y futuro
Quantum Markov semigroups (QMS): past, present and future panorama
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Palabras clave:
Referencias (VER)
Accardi L, Frigerio A, Lu YG. The weak coupling limit as a quantum functional central limit, Comm Math Phys. 1990;131(3):537-570. https://doi.org/10.1007/BF02098275
Accardi L, Lu YG. Volovich I. 2002. Quantum theory and its stochastic limit, Springer-Verlag, Berlin.
Accardi L, Lu YG, Volovich I. 2002. Quantum Theory and Its Stochastic Limit, Springer, New York. Phys.
Agarwal GS. Open quantum Markovian systems and the microreversibility, Z. Physik 1973;258:409
Agredo J, Fagnola F, Rebolledo R. Decoherence free subspaces of a quantum Markov Semigroup, J. Math. Phys. 2014;55:
Alicki R. On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 1976;10:
Alicki R. K: Lendi Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics. 1987;286: Springer-Verlag, Berlin.
Attal S. 2006. Elements of Operators Algebras and Modular Theory, Open Quantum Systems I:
The Hamiltonian approach. Springer Verlag, Lectures Notes in Mathematics, Pp. 1-105.
Bratelli O, Robinson DW. Operator Algebras and Quantum Statistical Mechanics, 1987;1: second e.d., springer-Verlag,
Cipriani F. Dirichlet forms and markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 1997;147:259
Davies EB. Markovian master equations, Comm. Math. Phys. 1974;39:
Dereziński J, De Roeck W. Extended weak coupling limit for Pauli-Fierz operators, Comm. Math. Phys. 2008;279:
Derezynski J, Fruboes R. Fermi golden rule and open quantum systems, Open Quantum Systems III - Recent Developments, Lecture Notes in Mathematics 1882, Springer Berlin, Heidelberg (2006), pp. 67116.
Fagnola F. Quantum Markov semigroups and quantum flows, Proyecciones. J. Math. 1999;18(3):
Fagnola F, Rebolledo R. Entropy production for quantum Markov semigroups, arXiv:1212.1366v1
Fagnola F, Rebolledo R. From classical to quantum entropy production, QP-–PQ:Quantum Probab. White Noise Anal. 2010;25:245
Fagnola F, Umanità V. Generators of KMS symmetric Markov semigroups on B(h). Symmetry and quantum detailed balance, Commun. Math. Phys. 2010;298:298
Fagnola F, Umanità V. Generators of detailed balance quantum Markov semigroups, Inf. Dim. Anal. Quantum Probab. Rel. Topics. 2007;10:335
Goldstein S, Lindsay JM. Beurling-Deny condition for KMS symmetric dynamical semigroups, C. R. Acad. Sci. Paris. 1993;317:1053
Kossakowski A, Gorini V, Verri M. Quantum detailed balance and KMS condition, Comm. Math. Phys. 1977;57:97
Majewski WA. The detailed balance condition in quantum statistical mechanics, J. Math. Phys. 1984;25:614
Majewski WA, Streater RF. Detailed balance and quantum dynamical maps, J. Phys. A: Math. Gen. 1998;31:7981
Parthasarathy KR. An introduction to quantum stochastic calculus, Monographs in Mathematics Birkhäuser- Verlag, Basel. 1992;85:
Rebolledo R. 2006. Complete Positivity and the Markov structure of Open Quantum Systems, Open Quantum Systems II: The Markovian approach. Springer Verlag, Lectures Notes in Mathematics. Pp. 149-182.