Diseño y evaluación de un micro viscosímetro de bajo costo utilizando un resonador de cristal de cuarzo y Arduino
Designing and evaluating a low-cost micro-viscometer using a quartz crystal resonator (QCR) and an Arduino DUE microcontroller board
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Palabras clave
Referencias
Auge J, Hauptmann P, Hartmann J, Rösler S, Lucklum R. New design for QCM sensors in liquids. Sensors and actuators. B, Chemical.1995;24(1-3):43–48.
Cardinaels R, Van De Velde J, Mathues W, Van Liedekerke P, Moldenaers P. A rheological characterisation of liquid egg albumen. Proc. Insid. Food Symp. 2013;1–6.
Carvajal Ahumada LA, Ahumada L AC, Pérez NP, Sandoval OLH, del Pozo Guerrero F, Olmedo JJS. A new way to find dielectric properties of liquid sample using the quartz crystal resonator (QCR). Sensors and actuators. A, Physical. 2016;239:153–160.
Cernosek RW, Martin SJ, Hillman AR, Bandey HL. (1998). Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 45(5):1399-1407.
Dewar RJ, Joyce MJ. 2005. The quartz crystal microbalance as a microviscometer for improved rehabilitation therapy of dysphagic patients. En 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. https://doi.org/10.1109/iembs.2005.1616979
Fang J, Zhu T, Sheng J, Jiang Z, Ma Y. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method. Scientific reports, 2015;5:8491.
García-Abuín A, Gómez-Díaz D, Navaza JM, Regueiro L, Vidal-Tato I. Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydrate polymers, 2011;85(3):500–505.
Granstaff VE, Martin SJ. Characterization of a thickness–shear mode quartz resonator with multiple nonpiezoelectric layers. J Appl Phys. 1994;75(3):1319–1329.
Höök F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H. Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Analytical chemistry. 2001;73(24), 5796–5804.
Jakoby B, Art G, Bastemeijer J. Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE sensors journal. 2005;5(5):1106–1111.
Kanazawa K, Gordon JG. The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta. 1985;175:99–105.
Larson RG. The rheology of dilute solutions of flexible polymers: Progress and problems. J Rheol. 2005;49(1):1–70.
Nakamoto T, Kobayashi T. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 1994;41(6):806–811.
Nwankwo E, Durning CJ. Mechanical response of thickness-shear mode quartz-crystal resonators to linear viscoelastic fluids. Sensors and actuators. A, Physical, 1998;64(2):119–124.
Pitsillides A A. Joint immobilization reduces synovial fluid hyaluronan concentration and is accompanied by changes in the synovial intimal cell populations. Rheumatology, 1999;38(11):1108–1112.
Rao MA. 2007. Rheology of Fluid and Semisolid Foods.
Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Phys. 1959:155(2):206–222.
Schurz J, Ribitsch V. Rheology of synovial fluid. Biorheology. 1987;24:385–399.
Swan A, Amer H, Dieppe P. The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis. 2002;61(6):493–498.