Diseño y evaluación de un micro viscosímetro de bajo costo utilizando un resonador de cristal de cuarzo y Arduino
Designing and evaluating a low-cost micro-viscometer using a quartz crystal resonator (QCR) and an Arduino DUE microcontroller board
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Palabras clave:
Referencias (VER)
Auge J, Hauptmann P, Hartmann J, Rösler S, Lucklum R. New design for QCM sensors in liquids. Sensors and actuators. B, Chemical.1995;24(1-3):43–48.
Cardinaels R, Van De Velde J, Mathues W, Van Liedekerke P, Moldenaers P. A rheological characterisation of liquid egg albumen. Proc. Insid. Food Symp. 2013;1–6.
Carvajal Ahumada LA, Ahumada L AC, Pérez NP, Sandoval OLH, del Pozo Guerrero F, Olmedo JJS. A new way to find dielectric properties of liquid sample using the quartz crystal resonator (QCR). Sensors and actuators. A, Physical. 2016;239:153–160.
Cernosek RW, Martin SJ, Hillman AR, Bandey HL. (1998). Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 45(5):1399-1407.
Dewar RJ, Joyce MJ. 2005. The quartz crystal microbalance as a microviscometer for improved rehabilitation therapy of dysphagic patients. En 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. https://doi.org/10.1109/iembs.2005.1616979
Fang J, Zhu T, Sheng J, Jiang Z, Ma Y. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method. Scientific reports, 2015;5:8491.
García-Abuín A, Gómez-Díaz D, Navaza JM, Regueiro L, Vidal-Tato I. Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydrate polymers, 2011;85(3):500–505.
Granstaff VE, Martin SJ. Characterization of a thickness–shear mode quartz resonator with multiple nonpiezoelectric layers. J Appl Phys. 1994;75(3):1319–1329.
Höök F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H. Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Analytical chemistry. 2001;73(24), 5796–5804.
Jakoby B, Art G, Bastemeijer J. Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE sensors journal. 2005;5(5):1106–1111.
Kanazawa K, Gordon JG. The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta. 1985;175:99–105.
Larson RG. The rheology of dilute solutions of flexible polymers: Progress and problems. J Rheol. 2005;49(1):1–70.
Nakamoto T, Kobayashi T. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 1994;41(6):806–811.
Nwankwo E, Durning CJ. Mechanical response of thickness-shear mode quartz-crystal resonators to linear viscoelastic fluids. Sensors and actuators. A, Physical, 1998;64(2):119–124.
Pitsillides A A. Joint immobilization reduces synovial fluid hyaluronan concentration and is accompanied by changes in the synovial intimal cell populations. Rheumatology, 1999;38(11):1108–1112.
Rao MA. 2007. Rheology of Fluid and Semisolid Foods.
Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Phys. 1959:155(2):206–222.
Schurz J, Ribitsch V. Rheology of synovial fluid. Biorheology. 1987;24:385–399.
Swan A, Amer H, Dieppe P. The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis. 2002;61(6):493–498.