Cambios en los niveles de nutrientes en solución hidropónica de espinaca baby (Spinacia oleracea L.), para su futura aplicación en acuapónia

Changes in nutrient levels in hydroponic solution of baby spinach (Spinacia oleracea L.), for future application in aquaponics

Contenido principal del artículo

Edna R. Riaño-Castillo
Lida Caicedo-Gegén
Hernán Hurtado-Giraldo

Resumen

La espinaca es una planta de alto valor nutricional, mostrando gran acogida en su presentación “baby”. La producción en hidroponía está limitada por la solución nutritiva, siendo la acuaponía un potencial complemento a este factor limitante. El objetivo de esta investigación fue definir los cambios de niveles de nutrientes en la solución hidropónica en espinaca baby. Se trabajó con 24 plántulas de espinaca en hidroponía de cama flotante usando solución “La Molina” en tanques de 50 L; se realizaron 5 repeticiones y 3 réplicas. Para cada réplica se cosechó cada tres semanas, registrando semanalmente variables fisicoquímicas de la solución. Además, se llevó a cabo un muestreo al inicio y final de cada réplica, evaluando las siguientes variables: número y longitud de hojas, área foliar, peso fresco y seco de la parte aérea. Se obtuvo en orden descendiente la siguiente extracción de macronutriente: N>K+>Ca2+>P y micronutrientes: Mn2+>Fe2+. Durante el ciclo de cultivo el pH de la solución osciló entre 6.00-6.97, el oxígeno disuelto entre 4.93-7.54 mg/L y la conductividad disminuyó constantemente a lo largo del ciclo, inició en 1558-1592 μS/cm y finalizó entre 1140-1275 μS/cm. Se obtuvo un TCC= 0.00002-0.00003 g/cm2/día; TRC=0.16, 0.15 y 0.14 g/g/día y TAN=0.006, 0.005 y 0.006 g/cm2/día para las réplicas 1, 2 y 3, respectivamente. Este estudio revela que esta planta podría tener buenos rendimientos en un sistema acuapónico, especialmente por los requerimientos de N, Ca2+>P, no obstante, se deberían adicionar bajas cantidades de algunos micronutrientes, que suelen ser escasos en los sistemas acuapónicos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Agronet. 2016. Área, producción y rendimiento nacional por cultivo. Consultado el 21-01-2018 en https://www.agronet.gov.co/Paginas/inicio.aspx.

Assimakopoulou A. Effect of iron supply and nitrogen form on growth, nutritional status and ferric reducing activity of spinach in nutrient solution culture. Sci Hort. 2006;110:21-29. doi: 10.1016/j.scienta.2006.06.010.

Barker AV, Pilbeam DJ. 2006. Handbook of Plant Nutrition. USA: New York.

Barraza FV, Fischer F, Cardona CE. Estudio del proceso de crecimiento del cultivo del tomate (Lycopersicon esculentum Mill.) en el valle del Sinú medio, Colombia. Agron Colomb. 2004;22(1):81-90. Obtenido de http://www.redalyc.org/pdf/1803/180317823011.pdf

Brechner M, Villiers D. 2013. Hydroponic Spinach Production Handbook. USA: Cornell Controlled Environment Agricultures.

Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2011. Function of Nutrients: Micronutrients. Marschner’s Mineral Nutrition of Higher Plants: Third Edition (pp. 191–248). http://doi.org/10.1016/B978-0-12-384905-2.00007-8

Carranza C, Lanchero O, Miranda D, Chaves B. Análisis del crecimiento de lechuga (Lactuva sativa L.) “batavia” cultivada en un suelo salino de la sábana de Bogotá. Agron Colomb. 2009;27(1):41-48. Obtenido de http://www.revistas.unal.edu.co/index.php/agrocol/article/view/11330

Cockx E, Simonne EH. 2011. Reduction of the Impact of Fertilization and irrigation on processes in the Nitrogen cycle in vegetable fields with BMPs. HS948. Obtenido de http://edis.ifas.ufl.edu.

Delaide B, Goddek S, Morgenstern R, Wuertz S, Jijakli H, Gross A. 2017. A study on the mineral elements available in aquaponics, their impact on lettuce productivity and the potential improvement of their availability. Universitè de Liège-Gembloux agro-biotech.

FAO - Food and Agriculture Organization of the United Nations. 2017. Consultado 21-01-2018 en http://faostat3.fao.org/wds/rest/exporter/streamexcel

Fernandes MS. 2006. Nutrição Mineral de Plantas. (2a Ed). Brazil: Sociedade Brasileira de Ciência do Solo, Viçosa.

Fernández J, Peñapareja D, Álvarez N, López J, González A. Producción de espinaca “Baby Leaf” en camas flotantes. Revista en Horticultura. 2007;36:203-210.

Fernandez J, Egea-Gilabert C, Nicola S. 2015. Producción de hortalizas de hoja baby leaf en bandejas flotantes. Universidad Politécnica de Cartagena. Obtenido de http://www.magrama.gob.es/ministerio/pags/biblioteca/revistas/pdf

Gil R, Carrillo DQ, Jiménez JG. Determinación de las principales plagas de la espinaca (Spinacia oleracea) en Cota, Cundinamarca. Rev Colomb Entomol. 2007;33(2):124-128.

Hao N, Xia W, Tang Y, Wu M, Jiang H, Lin X, Zhou D. Periconceptional folic acid supplementation among pregnant women with epilepsy in a developing country: A retroprospective survey in China. Epilepsy Behav. 2015;44:27-34. doi:10.1016/j.yebeh.2014.12.026

Hoyos V, Rodríguez M, Cárdenas J, Balaguera H. Análisis del crecimiento de espinaca (Spinacia oleracea) bajo el efecto de diferentes fuentes y dosis de nitrógeno. Rev Colomb Cienc Hortic. 2009;3(2):175-187.

Jiménez J, Arias LA, Espinoza L, Fuentes LS, Garzón C, Gil R, Rodríguez M. 2010. El cultivo de la Espinaca (Spinacia oleracea L.) y su manejo fitosanitario en Colombia. Colombia, Bogotá: Fundación Universidad de Bogotá Jorge Tadeo Lozano.

Jin C, Liu Y, Mao Q, Wang Q, Du S. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L). Food Chem. 2013;138:2188-2194. doi: 10 .1016/j.foodchem.2012.12.025

Leskovar DI, Larry AS, Daniello FJ. Planting systems influence growth dynamics and quality of fresh market spinach. Hort Science. 2000;35(7):1238-1240. Obtenido de http://hortsci.ashspublications.org/content/35/7/1238.full.pdf

Martínez A, Lee R, Chaparro D, Páramo S. 2003. Postcosecha y mercadeo de hortalizas de clima frio, bajo prácticas de producción sostenible. Colombia, Bogotá: Fundación Universidad de Bogotá Jorge Tadeo Lozano.

Navarro H, Carrasco-Silva DM, Lucchini M. 2010. Efecto de la utilización de diferentes sustratos en el rendimiento y calidad de rucula y espinaca baby cultivados en el sistema hidropónico de bandejas flotantes desde siembra a cosecha. Tesis de maestría, Universidad de Talca, Chile.

Nelson RL. 2008. Aquaponic Food Production. Raising fish and plants for food and profit. Aquaponic. (1a Ed). USA

Nxawe S, Laubscher C, Ndakidemi P. Effect of regulated irrigation water temperature on hydroponics production of Spinach (Spinacia oleracea L). Afr J Agric Res. 2009;4 (12):1442-1446. Obtenido de http://www.academicjournals.org/AJAR

Nxawe S, Ndakidemi PA, Laubscher CP. Effects of regulating hydroponic solution temperature on plant growth, accumulation of nutrients and other metabolites. Afr. J. Biotechnol. 2012;9(54):9128-9134. Obtenido de http://digitalknowledge.cput.ac.za/xmlui/handle/123456789/648

Oosterhuis DM, Loka D, Kawakami EM, Pettigrew W T. 2014. The physiology of potassium in crop production. Advances in Agronomy. Elsevier. doi: 10.1016/B978-0-12-800132-5.00003-1.

PHN - Plan Hortícola Nacional. 2006. Espinaca. Consultado 25-01-2015 en http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_28_PHN.pdf

Purquerio L, Melo PC. Hortaliças pequenas e saborosas. Hortic Bras. 2011;29:1.

Ranade-malvi U, Malvi UR. Interaction of micronutrients with major nutrients with special reference to potassium. Kamataka Journal Agricultural Science. 2011;24(1):106-109.

Ramírez LM, Pérez MT, Jiménez P, Hurtado H, Gómez E. Evaluación preliminar de sistemas acuapónicos e hidróponicos en cama flotante para el cultivo de orégano (Origanum vulgare: LAMIACEAE). Revista Universidad Militar Nueva Granda. 2011;7(2):242-259. Obtenido de http://revistas.unimilitar.edu.co/index.php/rfcb

Ramírez D, Sabogal D, Gómez E, Rodríguez D, Hurtado H. Montaje y evaluación preliminar de un sistema acuapónico Goldfish - Lechuga. Revista Universidad Militar Nueva Granda. 2009;5(1):154-170. Obtenido de http://revistas.unimilitar.edu.co/index.php/rfcb

Rafiee G, Roos CS. Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp) growth in a recirculating aquaculture system. Aquaculture. 2005;244:109-118. doi:10.1016/j.aquaculture.2004.10.029

Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. J Plant Physiol. 2009;166:447-466. doi:10.1016/j.jplph.2008.12.009

Timmons MB & Ebeling JM. 2007. Recirculating aquaculture. (2a ed). USA: Cayuga Aqua Ventures.

Taiz L, Zeiger E. 2006. Plant Physiology. (1a Ed). USA, Sunderland, Massachusetts.

Vicente AR, Manganaris GA, Sozzi G, Crisosto CH. 2009. Postharvest Handling. (2a Ed). New York, USA.

Villarreal R, Hernández VS, Sánchez P, García ER, Osuna ET, Parra TS, Armenta BA. Efecto de la cobertura del suelo con leguminosas en rendimiento y calidad del tomate. Terra Latinoam. 2006;24(4):549-556. Obtenido de http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=57324413

Villarroel M, Alvariño JMR, Duran JM. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics. Span J Agric Res. 2011;9(2):537-545. doi:10.5424/sjar/20110902-181-10.

Xiaoxia L, Lingli L, Qiuhui C, Wenya D, Yan H, Chongwei J, Xianyong L. Ammonium reduces oxalate accumulation in different spinach (Spinacia oleracea) genotypes by inhibiting root uptake of nitrate. Food Chem. 2014;3:1-7.doi: 10.1016/j.foodchem.2014.06.122

Artículos más leídos del mismo autor/a