Fuentes proteicas alternas como sustituto parcial a la harina de pescado en las formulaciones nutricionales del cultivo de camarón (Litopenaeus vannamei).

Alternate protein sources as a partial substitute for fishmeal in nutritional formulations for shrimp (Litopenaeus vannamei) farming.

Contenido principal del artículo

Pedro Porto

Resumen

Recientemente muchos investigadores han realizado estudios relacionados con la nutricion de las especies acuícolas, para poder reemplazar parcial o totalmente la fuente de proteína que comunmemte se utiliza en las formulaciones nutricionales una amplia gama de materias primas tanto de origen vegetal como de origen animal, han sido evaluadas las cuales muchas de ellas presentan un potencial considerable para el suministro de nutrientes esenciales en las especies acuícolas, a pesar de ello, el uso de cualquier materia prima representa diferentes riesgos que deben mitigarse para poder obtener alimentos seguros, económicamente viables y sostenibles, para poder mantener el sector. Este documento presenta fuentes alternas como sustituto parcial a la harina de pescado, para las formulaciones nutricionales en piensos de camarón de cultivo Litopenaeus vannamei.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Adriana Rodríguez-Forero, Universidad del Magdalena

Biol. Mar, MSc, PhD, Grupo de Investigación y Desarrollo Tecnológico en Acuicultura (GIDTA), Programa de Ingeniería Pesquera, Universidad del Magdalena. Santa Marta. Colombia

Referencias (VER)

Abraham, E. M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., ... & Vlachostergios, D. (2019). The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. International journal of molecular sciences, 20(4), 851.

Achupallas, J. (1995). La Calidad de los Alimentos Acuícolas y su desafío en el mantenimiento de una Acuicultura ecuatoriana sostenible. Revista de la Cámara Nacional de Acuacultura, 10, 24-26.

Alves, A. P. D. C., Paulino, R. R., Pereira, R. T., da Costa, D. V., & e Rosa, P. V. (2021). Nile tilapia fed insect meal: Growth and innate immune response in different times under lipopolysaccharide challenge. Aquaculture Research, 52(2), 529-540.

Amaya, E. A., Davis, D. A., & Rouse, D. B. (2007). Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture, 262(2-4), 393-401.

Anaya, R. R. (2005). Cultivo del camarón blanco, Litopenaeus vannamei, Boone (1931), en sistema cerrado a alta densidad. [Tesis de maestria, Centro de investigación científica y de educación superior de ensenada. https://cicese.repositorioinstitucional.mx/jspui/bitstream/1007/1144/1/167251.pdf

Angell, A. R., Angell, S. F., de Nys, R., & Paul, N. A. (2016). Seaweed as a protein source for mono-gastric livestock. Trends in food science & technology, 54, 74-84.

Angell, A. R., de Nys, R., & Paul, N. A. (2016). The nitrogen, protein and amino acid content of seaweeds. Journal of Applied Phycology, 28 (1). 511-524

Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422, 193-201.

Bauer, W., Prentice-Hernandez, C., Tesser, M. B., Wasielesky Jr, W., & Poersch, L. H. (2012). Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture, 342, 112-116.

Bautista, J. F. F., Vergara, R., & Suarez, A. (2017). Evaluación de una fórmula alimenticia para camarón de cultivo (L. vannamei) con inclusión de proteína vegetal a base de harina de soya. Revista AquaTIC, 1(44), 12-29

Berg JM, Stryer L & Tymoczko JL (2008) Bioquímica. 6ª edición. Editorial Reverté. Barcelona, España. p. 685

Berger, C. (2020). La acuicultura y sus oportunidades para lograr el desarrollo sostenible en el Perú. South Sustainability, 1(1), 3.

Bertrand, J. A., Sudduth, T. Q., Condon, A., Jenkins, T. C., & Calhoun, M. C. (2005). Nutrient content of whole cottonseed. Journal of Dairy Science, 88(4), 1470-1477.

Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., ... & Corner, R. (2010). Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2897-2912.

Bravo, L. K., & Santos, G. E. (2019). Evaluación de dos métodos de alimentación para engorde de camarón blanco. [tesis de pregrado, Escuela Agrícola Panamericana]. https://bdigital.zamorano.edu/items/68c0b485-c16c-47e2-b44b-e2bc0ddb2d97

Byerlee, D., Stevenson, J., & Villoria, N. (2014). Does intensification slow crop land expansion or encourage deforestation? Global food security, 3(2), 92-98.

Cai, Y., Huang, H., Yao, W., Yang, H., Xue, M., Li, X., & Leng, X. (2022). Effects of fish meal replacement by three protein sources on physical pellet quality and growth performance of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Reports, 25, 101210.

Callegaro, K., Brandelli, A., & Daroit, D. J. (2019). Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Management, 95, 399-415.

Camanõ, H. N. (2014). Substituição da farinha e do óleo do peixe por farinha e óleo de origem vegetal em rações utilizadas na fase de engorda do camarão branco Litopenaeus vannamei em sistemas de bioflocos (BFT) (Master's thesis). https://repositorio.furg.br/bitstream/handle/1/9281/Hernando_Camano_2014.pdf?sequence=1&isAllowed=y

Centenaro, G. S., Prentice-Hernández, C., Salas-Mellado, M., & Netto, F. M. (2009). Efeito da concentração de enzima e de substrato no grau de hidrólise e nas propriedades funcionais de hidrolisados proteicos de corvina (Micropogonias furnieri). Química nova, 32, 1792-1798.

Cervantes-Hernández, P., Ramos-Cruz, S., & Gracia Gasca, A. (2006). Evaluación del estado de la pesquería de camarón en el Golfo de Tehuantepec. Hidrobiológica, 16(3), 233-239.

Chen, F., Leng, Y., Lu, Q., & Zhou, W. (2021). The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Research, 60, 102541.

Chen, Y., Chi, S., Zhang, S., Dong, X., Yang, Q., Liu, H., ... & Xie, S. (2021). Replacement of fish meal with Methanotroph (Methylococcus capsulatus, Bath) bacteria meal in the diets of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 541, 736801.

Chen, Y., Chi, S., Zhang, S., Dong, X., Yang, Q., Liu, H., ... & Xie, S. (2022). Evaluation of Methanotroph (Methylococcus capsulatus, Bath) bacteria meal on body composition, lipid metabolism, protein synthesis and muscle metabolites of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 547, 737517.

Cheng, K. M., Hu, C. Q., Liu, Y. N., Zheng, S. X., & Qi, X. J. (2005). Dietary magnesium requirement and physiological responses of marine shrimp Litopenaeus vannamei reared in low salinity water. Aquaculture Nutrition, 11(5), 385-393.

Cheng, K. M., Hu, C. Q., Liu, Y. N., Zheng, S. X., & Qi, X. J. (2006). Effects of dietary calcium, phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization of Litopenaeus vannamei reared in low-salinity water. Aquaculture, 251(2-4), 472-483.

Cheng, Z. J., Behnke, K. C., & Dominy, W. G. (2002). Effects of poultry by-product meal as a substitute for fish meal in diets on growth and body composition of juvenile Pacific white shrimp, Litopenaeus vannamei. Journal of Applied Aquaculture, 12(1), 71-83.

Choi, I. H., Kim, J. M., Kim, N. J., Kim, J. D., Park, C., Park, J. H., & Chung, T. H. (2018). Replacing fish meal by mealworm (Tenebrio molitor) on the growth performance and immunologic responses of white shrimp (Litopenaeus vannamei). Acta Scientiarum. Animal Sciences, 40. e35015

Chumpol, S., Kantachote, D., Nitoda, T., & Kanzaki, H. (2018). Administration of purple nonsulfur bacteria as single cell protein by mixing with shrimp feed to enhance growth, immune response and survival in white shrimp (Litopenaeus vannamei) cultivation. Aquaculture, 489, 85-95.

Cole, A. J., De Nys, R., & Paul, N. A. (2015). Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Research, 7, 58-65.

Cruz-Suárez, L. E., Nieto-López, M., Guajardo-Barbosa, C., Tapia-Salazar, M., Scholz, U., & Ricque-Marie, D. (2007). Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets. Aquaculture, 272(1-4), 466-476.

Cruz-Suárez, L. E., Tapia-Salazar, M., Villarreal-Cavazos, D., Beltran-Rocha, J., Nieto-López, M. G., Lemme, A., & Ricque-Marie, D. (2009). Apparent dry matter, energy, protein and amino acid digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles. Aquaculture, 292(1-2), 87-94.

Cruz-Suárez, L. E., Villarreal-Colmenares, H., Tapia-Salazar, M., Nieto-López, M. G., Villarreal-Cavazos, D. A., & Ricque-Marie, D. (2008). Manual de metodologías de digestibilidad in vivo e in vitro para ingredientes y dietas para camarón. Universidad Autónoma de Nuevo León, Mty., NL, Mexico. ISBN: 978-607-433-020-5. No.

Cummins Jr, V. C., Rawles, S. D., Thompson, K. R., Velasquez, A., Kobayashi, Y., Hager, J., & Webster, C. D. (2017). Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473, 337-344.

Cuzon, G., Lawrence, A., Gaxiola, G., Rosas, C., & Guillaume, J. (2004). Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235(1-4), 513-551.

Cuzon, G., Santos, R. D., Hew, M., & Poullaouec, G. (1981). Use of Spirulina in Shrimp (Penaeus japonicus) diet. Journal of the World Mariculture Society, 12(2), 282-291.

Davis, D. A., & Arnold, C. R. (2000). Replacement of fish meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 185(3-4), 291-298.

Davis, D. A., & Gatlin III, D. M. (1996). Dietary mineral requirements of fish and marine crustaceans. Reviews in Fisheries Science, 4(1), 75-99.

Davis, D. A., Lawrence, A. L., & Gatlin III, D. (1993a). Dietary copper requirement of Penaeus vannamei. Japan Society of Fisheries Sciences, 59(1), 117-122.

Davis, D. A., Lawrence, A. L., & Gatlin III, D. M. (1993b). Evaluation of the dietary zinc requirement of Penaeus vannamei and effects of phytic acid on zinc and phosphorus bioavailability. Journal of the World Aquaculture Society, 24(1), 40-47.

Dawood, M. A. (2021). Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Reviews in Aquaculture, 13(1), 642-663.

Del Cisne Castillo-Ochoa, B., & Velásquez-López, P. C. (2021). Manejo estacional de los sistemas de producción de camarón en el Ecuador. Sociedad & Tecnología, 4(3), 447-461.

Dieterich, F., Boscolo, W. R., Pacheco, M. T. B., Silva, V. D., Gonçalves, G. S., & Vidotti, R. M. (2014). Development and characterization of protein hydrolysates originated from animal agro industrial byproducts. Journal of Dairy, Veterinary & Animal Research, 1(2), 1-7.

Drew, M. D., Borgeson, T. L., & Thiessen, D. L. (2007). A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology, 138(2), 118-136.

Duan, Y., Wang, Y., Dong, H., Ding, X., Liu, Q., Li, H., ... & Xiong, D. (2018). Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation. Frontiers in microbiology, 9, 2191.

El-Saadony, M. T., Alagawany, M., Patra, A. K., Kar, I., Tiwari, R., Dawood, M. A., ... & Abdel-Latif, H. M. (2021). The functionality of probiotics in aquaculture: an overview. Fish & Shellfish Immunology, 117, 36-52.

FAO (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma (Italia), Organización de las Naciones Unidas para la Alimentación y la Agricultura, Departamento de Pesca y Acuicultura. [en línea]. 20 de agosto 2022: (https://www.fao.org/documents/card/en/c/ca9229es). 243 páginas.

Feng, P., He, J., Lv, M., Huang, G., Chen, X., Yang, Q., ... & Ma, H. (2019). Effect of dietary Tenebrio molitor protein on growth performance and immunological parameters in Macrobrachium rosenbergii. Aquaculture, 511, 734247.

Fernández Gimenez, A. V., Fenucci, J. L., & Petriella, A. M. (2004). The effect of vitamin E on growth, survival and hepatopancreas structure of the Argentine red shrimp Pleoticus muelleri Bate (Crustacea, Penaeidea). Aquaculture research, 35(12), 1172-1178.

Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227.

Freccia, A., Tubin, J. S. B., Rombenso, A. N., & Emerenciano, M. G. C. (2020). Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality?. Emerging Technologies, Environment and Research for Sustainable Aquaculture, 1-14.

Galkanda Arachchige, H. S. C., Qiu, X., Stein, H. H., & Davis, A. (2019). Evaluation of soybean meal from different sources as an ingredient in practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 50(4), 1230-1247.

Galkanda‐Arachchige, H. S., Guo, J., Stein, H. H., & Allen Davis, D. (2020). Apparent energy, dry matter and amino acid digestibility of differently sourced soybean meal fed to Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 51(1), 326-340.

Galkanda‐Arachchige, H., & Davis, D. A. (2020). Evaluation of differently processed soybean meal products as ingredients in practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, 26(2), 287-295.

Gamboa‐Delgado, J., & Márquez‐Reyes, J. M. (2018). Potential of microbial‐derived nutrients for aquaculture development. Reviews in Aquaculture, 10(1), 224-246.

Gamboa-Delgado, J., Nieto-López, M. G., Maldonado-Muñiz, M., Villarreal-Cavazos, D., Tapia-Salazar, M., & Cruz-Suárez, L. E. (2020). Comparing the assimilation of dietary nitrogen supplied by animal-, plant-and microbial-derived ingredients in Pacific white shrimp Litopenaeus vannamei: A stable isotope study. Aquaculture reports, 17, 100294.

Gamboa-Delgado, J., Rojas-Casas, M. G., Nieto-López, M. G., & Cruz-Suárez, L. E. (2013). Simultaneous estimation of the nutritional contribution of fish meal, soy protein isolate and corn gluten to the growth of Pacific white shrimp (Litopenaeus vannamei) using dual stable isotope analysis. Aquaculture, 380, 33-40.

Gasco, L., Acuti, G., Bani, P., Dalle Zotte, A., Danieli, P. P., De Angelis, A., ... & Roncarati, A. (2020). Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Italian Journal of Animal Science, 19(1), 360-372.

Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., ... & Caruso, G. (2018). Fishmeal alternative protein sources for aquaculture feeds. Feeds for the aquaculture sector: current situation and alternative sources, 1, 1-28.

Gatlin III, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., ... & Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), 551-579.

Gerasimidis, K., Fillou, D. T., Babatzimcpoulou, M., Tassou, K., & Katsikas, H. (2007). Preparation of an edible cottonseed protein concentrate and evaluation of its functional properties. International journal of food sciences and nutrition, 58(6), 486-490.

Glencross, B. D., Booth, M., & Allan, G. L. (2007). A feed is only as good as its ingredients–a review of ingredient evaluation strategies for aquaculture feeds. Aquaculture nutrition, 13(1), 17-34.

Glencross, B. D., Smith, D. M., Thomas, M. R., & Williams, K. C. (2002). Optimising the essential fatty acids in the diet for weight gain of the prawn, Penaeus monodon. Aquaculture, 204(1-2), 85-99.

González-Félix, M. L., Lawrence, A. L., Gatlin III, D. M., & Perez-Velazquez, M. (2002). Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture, 205(3-4), 325-343.

Guo, J., Huang, Y., Salze, G., Roy, L. A., & Davis, D. A. (2020). Use of plant‐based protein concentrates as replacement for fishmeal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under high stocking density and low salinity conditions. Aquaculture Nutrition, 26(2), 225-232.

Han, F., Qian, J., Qu, Y., Li, Z., Chen, H., Xu, C., ... & Li, E. (2022). Partial replacement of soybean meal with fermented cottonseed meal in a low fishmeal diet improves the growth, digestion and intestinal microbiota of juvenile white shrimp Litopenaeus vannamei. Aquaculture Reports, 27, 101339.

Hardy, R. W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770-776.

Hazreen-Nita, M. K., Kari, Z. A., Mat, K., Rusli, N. D., Sukri, S. A. M., Harun, H. C., ... & Dawood, M. A. (2022). Olive oil by-products in aquafeeds: Opportunities and challenges. Aquaculture Reports, 22, 100998.

He, G., Zhang, T., Zhou, X., Liu, X., Sun, H., Chen, Y., ... & Lin, S. (2022). Effects of cottonseed protein concentrate on growth performance, hepatic function and intestinal health in juvenile largemouth bass, Micropterus salmoides. Aquaculture Reports, 23, 101052.

He, H., & Lawrence, A. L. (1993). Vitamin C requirements of the shrimp Penaeus vannamei. Aquaculture, 114(3-4), 305-316.

He, Y., Guo, X., Tan, B., Dong, X., Yang, Q., Liu, H., ... & Chi, S. (2021). Replacing fishmeal with cottonseed protein concentrate in feed for pearl gentian groupers (Epinephelus fuscoguttatus♀× E. lanceolatus♂): Effects on growth and expressions of key genes involved in appetite and hepatic glucose and lipid metabolism. Aquaculture Reports, 20, 100710.

Hernández, C., Olvera-Novoa, M. A., Aguilar-Vejar, K., González-Rodríguez, B., & de la Parra, I. A. (2008). Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 277(3-4), 244-250.

Hernández, C., Olvera‐Novoa, M. A., Hardy, R. W., Hermosillo, A., Reyes, C., & González, B. (2010). Complete replacement of fish meal by porcine and poultry by‐product meals in practical diets for fingerling Nile tilapia Oreochromis niloticus: digestibility and growth performance. Aquaculture nutrition, 16(1), 44-53.

Hou, Y., Wu, Z., Dai, Z., Wang, G., & Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1), 1-13.

Hu, J., Wang, G., Huang, W., Zhao, H., Mo, W., & Huang, Y. (2019). Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, body composition, serum biochemical indexes and antioxidant ability of juvenile Litopenaeus vannamei. Chinese Journal of Animal Nutrition, 31(11), 5292-5300.

Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., ... & Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329.

Huang, F., Wang, L., Zhang, C. X., & Song, K. (2017). Replacement of fishmeal with soybean meal and mineral supplements in diets of Litopenaeus vannamei reared in low-salinity water. Aquaculture, 473, 172-180.

Israel, A., Gavrieli, J., Glazer, A., & Friedlander, M. (2005). Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture, 249(1-4), 311-316.

Jaime-Ceballos, B., Civera Cerecedo, R., Villarreal, H., Galindo López, J., & Pérez-Jar, L. (2007). Uso de la harina de Spirulina platensis como atrayente en el alimento para el camarón Litopenaeus schmitti. Hidrobiológica, 17(2), 113-117.

James, R., Sampath, K., Thangarathinam, R., & Vasudevan, I. (2006). Effect of dietary Spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Israeli Journal of Aquaculture-Bamidgeh, 58, 1-9.

Jescovitch, L. N., Ullman, C., Rhodes, M., & Davis, D. A. (2018). Effects of different feed management treatments on water quality for Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 49(1), 526-531.

Lall, S. P. (2002). The Minerals. In: Fish Nutrition (Ed.), Elsevier Academic Press, San Diego, CA, USA, 259-308.

Lee, C., & Lee, K. J. (2018). Dietary protein requirement of Pacific white shrimp Litopenaeus vannamei in three different growth stages. Fisheries and Aquatic Sciences, 21(1), 1-6.

Li, E., Wang, X., Chen, K., Xu, C., Qin, J. G., & Chen, L. (2017). Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews in Aquaculture, 9(1), 57-75.

Li, W., Pan, L., Liu, H., Tan, B., Dong, X., Yang, Q., ... & Xie, R. (2022). Effects of the Clostridium butyricum on growth performance, antioxidant capacity, immunity and disease resistance of Litopenaeus Vannamei fed with cottonseed protein concentrate (CPC) replacement of fishmeal in diet. Fish & Shellfish Immunology, 126, 283-291.

Lim, C. (1996). Substitution of cottonseed meal for marine animal protein in diets for Penaeus vannamei. Journal of the World Aquaculture Society, 27(4), 402-409.

Liu, Fa-yi., & Lawrence, A. L. (1997). Dietary manganese requirement of Penaeus vannamei. Chinese Journal of Oceanology and Limnology, 15(2), 163-167.

Liu, H., Chen, G., Li, L., Lin, Z., Tan, B., Dong, X., ... & Zhou, X. (2022). Supplementing artemisinin positively influences growth, antioxidant capacity, immune response, gut health and disease resistance against Vibrio parahaemolyticus in Litopenaeus vannamei fed cottonseed protein concentrate meal diets. Fish & Shellfish Immunology, 131, 105-118.

Liu, H., Zhang, X., Tan, B., Lin, Y., Chi, S., Dong, X., & Yang, Q. (2014). Effect of dietary potassium on growth, nitrogen metabolism, osmoregulation and immunity of pacific white shrimp (Litopenaeus vannamei) reared in low salinity seawater. Journal of Ocean University of China, 13(2), 311-320.

Macias-Sancho, J., Poersch, L. H., Bauer, W., Romano, L. A., Wasielesky, W., & Tesser, M. B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture, 426, 120-125.

Makkar, H. P., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal feed science and technology, 197, 1-33.

Malcorps, W., Kok, B., van ‘t Land, M., Fritz, M., van Doren, D., Servin, K., ... & Davies, S. J. (2019). The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability, 11(4), 1212.

Mata, L., Magnusson, M., Paul, N. A., & de Nys, R. (2016). The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. Journal of applied phycology, 28(1), 365-375.

Matassa, S., Boon, N., Pikaar, I., & Verstraete, W. (2016). Microbial protein: future sustainable food supply route with low environmental footprint. Microbial biotechnology, 9(5), 568-575.

Maulu, S., Langi, S., Hasimuna, O. J., Missinhoun, D., Munganga, B. P., Hampuwo, B. M., ... & Dawood, M. A. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition, 11(2022), 334-349

McLean, E., Barrows, F. T., Craig, S. R., Alfrey, K., & Tran, L. (2020). Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge. Aquaculture, 527, 735383.

Menz, A., & Blake, B. F. (1980). Experiments on the growth of Penaeus vannamei Boone. Journal of Experimental Marine Biology and Ecology, 48(2), 99-111.

Molina-Poveda, C. (2016). Nutrient requirements. In: Nates, S.F. (Ed.), Aquafeed Formulation. Academic Press, San Diego, pp. 75–216.

Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M., & Jintasataporn, O. (2019). Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9(5), 258.

Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., ... & Kumar, G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1-20.

Nasri, M. (2017). Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A review. Advances in food and nutrition research, 81, 109-159.

National Research Council (NRC). (2011). Nutrient Requirements of Fish and Shrimp. National Academies Press. https://books.google.es/books?id=H8tABAAAQBAJ&dq=Nutrient+Requirements+of+Fish+and+Shrimp&lr=&hl=es&source=gbs_navlinks_s

Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A. P., ... & Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, 106(36), 15103-15110.

Nieto López, M. G., Cruz Suárez, L. E., Ricque Marie, D., & Ezquerra Brauer, M. (2005). Técnica de digestibilidad in vitro en ingredientes y alimentos para camarón. Ciencia Uanl, 8(1), 65-73.

Nunes, A. J. P., SÁ, M. D. C., & NETO, H. (2011). As próximas gerações de ração para camarão marinho. Panorama da Aqüicultura, 21(123), 24-35.

Ogello, E. O., Outa, N. O., Obiero, K. O., Kyule, D. N., & Munguti, J. M. (2021). The prospects of Biofloc Technology (BFT) for sustainable aquaculture development. Scientific African, 14, e01053.

Olsen, R. L., & Hasan, M. R. (2012). A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends in Food Science & Technology, 27(2), 120-128.

Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1), 13-24.

Panini, R. L., Pinto, S. S., Nóbrega, R. O., Vieira, F. N., Fracalossi, D. M., Samuels, R. I., ... & Amboni, R. D. (2017). Effects of dietary replacement of fishmeal by mealworm meal on muscle quality of farmed shrimp Litopenaeus vannamei. Food Research International, 102, 445-450.

Paripatananont, T., Boonyaratpalin, M., Pengseng, P., & Chotipuntu, P. J. A. R. (2001). Substitution of soy protein concentrate for fishmeal in diets of tiger shrimp Penaeus monodon. Aquaculture research, 32, 369-374.

Peisker, M. (2001). Manufacturing of soy protein concentrate for animal nutrition. Cahiers Options Mediterraneennes, 54, 103-107.

Possamai, A. J., Zervoudakis, J. T., de Oliveira, A. S., Hatamoto-Zervoudakis, L. K., da Rosa e Silva, P. I. J. L., da Freiria, L. B., & Boas e Silva, Y. R. V. (2021). Modulating the lipid profile of beef using cottonseed and crude glycerin. Tropical Animal Health and Production, 53(1), 1-9.

Quang Tran, H., Van Doan, H., & Stejskal, V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Reviews in Aquaculture, 14(1), 237-251.

Rabasso Krohnert, M. S. (2006). Los impactos ambientales de la acuicultura, causas y efectos. Vector Plus Misc Cient Cultural, 28, 89-98.

Rahimnejad, S., Hu, S., Song, K., Wang, L., Lu, K., Wu, R., & Zhang, C. (2019). Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 510, 150-159.

Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of economic entomology, 95(1), 214-220.

Rawles, S. D., Riche, M. A. R. T. I. N., Gaylord, T. G., Webb, J., Freeman, D. W., & Davis, M. E. G. A. N. (2006). Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Morone chrysops♀× M. saxatilis♂) in recirculated tank production. Aquaculture, 259(1-4), 377-389.

Ray, G. W., Yang, Q., Tan, B., Dong, X., Chi, S., Liu, H., & Zhang, S. (2021). Effects of replacing fishmeal with dietary wheat gluten meal (WGM) on growth, serum biochemical indices, and antioxidative functions, gut microbiota, histology and disease resistance for juvenile shrimp Litopenaeus vannamei. Animal Feed Science and Technology, 281, 115090.

Reis, J., Novriadi, R., Swanepoel, A., Jingping, G., Rhodes, M., & Davis, D. A. (2020). Optimizing feed automation: improving timer-feeders and on demand systems in semi-intensive pond culture of shrimp Litopenaeus vannamei. Aquaculture, 519, 734759.

Richardson, A., Dantas-Lima, J., Lefranc, M., & Walraven, M. (2021). Effect of a Black Soldier Fly Ingredient on the Growth Performance and Disease Resistance of Juvenile Pacific White Shrimp (Litopenaeus vannamei). Animals, 11(5), 1450.

Richardson, C. M., Siccardi, A. J., Palle, S. R., Campbell, L. M., Puckhaber, L., Stipanovic, R. D., ... & Samocha, T. M. (2016). Evaluation of ultra‐low gossypol cottonseed and regular glandless cottonseed meals as dietary protein and lipid sources for Litopenaeus vannamei reared under zero‐exchange conditions. Aquaculture Nutrition, 22(2), 427-434.

Riche, M. (2015). Nitrogen utilization from diets with refined and blended poultry by-products as partial fish meal replacements in diets for low-salinity cultured Florida pompano, Trachinotus carolinus. Aquaculture, 435, 458-466.

Rosas, C., Bolongaro-Crevenna, A., Sanchez, A., Gaxiola, G., Soto, L., & Escobar, E. (1995). Role of digestive gland in the energetic metabolism of Penaeus setiferus. The Biological Bulletin, 189(2), 168-174.

Rossi Jr, W., & Davis, D. A. (2012). Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture, 338, 160-166.

Roy, L. A., Bordinhon, A., Sookying, D., Davis, D. A., Brown, T. W., & Whitis, G. N. (2009). Demonstration of alternative feeds for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters of west Alabama. Aquaculture research, 40(4), 496-503.

Roy, L. A., Davis, D. A., Saoud, I. P., & Henry, R. P. (2007). Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquaculture Nutrition, 13(2), 104-113.

Sá, M. V. C., Sabry‐Neto, H., Cordeiro‐Júnior, E., & Nunes, A. J. P. (2013). Dietary concentration of marine oil affects replacement of fish meal by soy protein concentrate in practical diets for the white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 19(2), 199-210.

Samocha, T. M., Davis, D. A., Saoud, I. P., & DeBault, K. (2004). Substitution of fish meal by co-extruded soybean poultry by-product meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 231(1-4), 197-203.

Shen, J., Liu, H., Tan, B., Dong, X., Yang, Q., Chi, S., & Zhang, S. (2020). Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Aquaculture Nutrition, 26(4), 1119-1130.

Shiau, S. Y. (1998). Nutrient requirements of penaeid shrimps. Aquaculture, 164(1-4), 77-93.

Silva, A. F. D. (2015). Uso da farinha de paixe análoga como fonte alternativa à farinhas de peixe no cultivo super intensivo do camarão branco Liptonaeus vannamei em sistema de bioflocos [Tesis de maestría, Universidade Federal do Rio Grande]. https://repositorio.furg.br/handle/1/9283.

Silva, N. P. (2019). Substituição da farinha de peixe pelo farelo de soja em dietas para juvenis co camarão branco, Litopenaeus vannamei, suplementadas com aminoácidos [Tesis predicada, Universidade Federal do Ceará]. https://repositorio.ufc.br/handle/riufc/50500

Silva‐Neto, J. F., Nunes, A. J. P., Sabry‐Neto, H., & Sá, M. V. C. (2012). Spirulina meal has acted as a strong feeding attractant for Litopenaeus vannamei at a very low dietary inclusion level. Aquaculture Research, 43(3), 430-437.

Smith, D. M., Tabrett, S. J., Barclay, M. C., & Irvin, S. J. (2005). The efficacy of ingredients included in shrimp feeds to stimulate intake. Aquaculture Nutrition, 11(4), 263-272.

Soares, A. N. (2021). Substituição integral da farinha de salmão por farinha de vísceras de aves Low-Ash, em rações para juvenis do camarão Litopenaeus vannamei. [Tesis de maestría, Universidade Federal do Ceará]. https://repositorio.ufc.br/handle/riufc/59269.

Soares, M. (2014). Avaliação do desempenho zootécnico do camarãobranco do Pacífico alimentado com dietas com diferentes níveis de substituição de farinha de peixe por concentrado proteico de soja. [Tesis de maestria, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/handle/123456789/123288.

Soares, M., Rezende, P. C., Correa, N. M., Rocha, J. S., Martins, M. A., Andrade, T. C., ... & do NascimentoVieira, F. (2020). Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports, 17, 100344.

Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals, 9(4), 119.

Sookying, D., & Davis, D. A. (2011). Pond production of Pacific white shrimp (Litopenaeus vannamei) fed high levels of soybean meal in various combinations. Aquaculture, 319(1-2), 141-149.

Sookying, D., & Davis, D. A. (2012). Use of soy protein concentrate in practical diets for Pacific white shrimp (Litopenaeus vannamei) reared under field conditions. Aquaculture International, 20(2), 357-371.

Sookying, D., Davis, D. A., & Soller Dias da Silva, F. (2013). A review of the development and application of soybean‐based diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, 19(4), 441-448.

Sookying, D., Silva, F. S. D., Davis, D. A., & Hanson, T. R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319(1-2), 232-239.

Storebakken, T. (2000). Soy products as fat and protein sources in fish feeds for intensive aquaculture. Soy in animal nutrition, 127-170.

Suresh, A. V., & Nates, S. (2011). Attractability and palatability of protein ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp, Litopenaeus stylirostris fed diets formulated with high levels of poultry byproduct meal. Aquaculture, 319(1-2), 132-140.

Tacon, A. G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158.

Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 1-14.

Tesser, M. B., Cardozo, A. P., Camaño, H. N., & Wasielesky, W. (2019). Substituição da farinha e do óleo de peixe por farinha e óleo de origem vegetal em rações utilizadas na fase de engorda do camarão-branco-do-pacífico Litopenaeus vannamei, em sistemas de bioflocos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71, 703-710.

Tibbetts, S. M., Yasumaru, F., & Lemos, D. (2017). In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal research, 21, 76-80.

Tseng, Y. C., & Hwang, P. P. (2008). Some insights into energy metabolism for osmoregulation in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(4), 419-429.

Ullman, C., Rhodes, M., Hanson, T., Cline, D., & Davis, D. A. (2019). Effects of four different feeding techniques on the pond culture of Pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 50(1), 54-64.

Van Huis, A., Dicke, M., & van Loon, J. J. (2015). Insects to feed the world. Journal of Insects as Food and Feed, 1(1), 3-5

Van Wyk, P. (1999). Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. Farming marine shrimp in recirculating freshwater systems, 220.

Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K. L., Mountain, J., & Scarpa, J. (1999). Nutrition and Feeding of Litopenaeus vannamei in Intensive Culture Systems.In: Van Wyk, P. (Ed.), Farming Marine Shrimp in Recirculating Freshwater Systems (Vol. 7, pp. 125-140). Harbor Branch Oceanographic Institution.

Molina-Poveda, C. (2016). Nutrient requirements. In: Nates, S.F. (Ed.), Aquafeed Formulation. Academic Press, San Diego, pp. 75–216.

Vela, L., Álvarez, G., Cossio, J., Helguero, B., Martínez, M., & Santacruz, R. (2014). Diagnóstico estratégico del sector pesquero peruano. Obtenido de https://web. ua. es/es/giecryal/documentos/pesca-peru. pdf.

Vizcaíno, A. J., López, G., Sáez, M. I., Jiménez, J. A., Barros, A., Hidalgo, L., ... & Alarcón, F. J. (2014). Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture, 431, 34-43.

Wang, H., Hu, X., Zheng, Y., Chen, J., Tan, B., Shi, L., & Zhang, S. (2022). Effects of replacing fish meal with cottonseed protein concentrate on the growth, immune responses, digestive ability and intestinal microbial flora in Litopenaeus vannamei. Fish & Shellfish Immunology, 128, 91-100.

Wang, H., Hu, X., Zheng, Y., Chen, J., Tan, B., Shi, L., & Zhang, S. (2022). Effects of replacing fish meal with cottonseed protein concentrate on the growth, immune responses, digestive ability and intestinal microbial flora in Litopenaeus vannamei. Fish & Shellfish Immunology, 128, 91-100.

Wang, J., Zhang, H., Yang, Q., Tan, B., Dong, X., Chi, S., ... & Zhang, S. (2020). Effects of replacing soybean meal with cottonseed meal on growth, feed utilization and non-specific immune enzyme activities for juvenile white shrimp, Litopenaeus vannamei. Aquaculture Reports, 16, 100255.

Wangsoontorn, S., Chuchird, N., Wudtisin, I., & Crook, A. (2018). The effect of substituting fish meal with fermented soybean meal on the growth performance and immune parameters of Pacific white shrimp (Litopenaeus vannamei). Journal of Fisheries and Environment, 42(2), 32-40.

Were, G. J., Irungu, F. G., Ngoda, P. N., Affognon, H., Ekesi, S., Nakimbugwe, D., ... & Mutungi, C. M. (2022). Nutritional and microbial quality of extruded fish feeds containing black soldier fly (Hermetia illucens L) larvae meal as a replacement for fish meal for Nile Tilapia (Oreochromis niloticus) and African sharptooth catfish (Clarius gariepinus). Journal of Applied Aquaculture, 34(4), 1036-1052.

Xie, S. W., Liu, Y. J., Zeng, S., Niu, J., & Tian, L. X. (2016). Partial replacement of fish-meal by soy protein concentrate and soybean meal based protein blend for juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 464, 296-302.

Xie, S. W., Wei, D., Chen, S. J., Zhuang, Z., Yin, P., Liu, Y. J., ... & Niu, J. (2020b). Dietary fishmeal levels affect anti‐oxidative ability and metabolomics profile of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 26(3), 978-989.

Xie, S., Wei, D., Fang, W., Yin, P., Liu, Y., Niu, J., & Tian, L. (2020a). Survival and protein synthesis of post-larval White Shrimp, Litopenaeus vannamei were affected by dietary protein level. Animal Feed Science and Technology, 263, 114462.

Xie, S., Wei, D., Yin, P., Zheng, L., Guo, T., Liu, Y., ... & Niu, J. (2019). Dietary replacement of fish-meal impaired protein synthesis and immune response of juvenile Pacific white shrimp, Litopenaeus vannamei at low salinity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 228, 26-33.

Yadav, G., Meena, D. K., Sahoo, A. K., Das, B. K., & Sen, R. (2020). Effective valorization of microalgal biomass for the production of nutritional fish-feed supplements. Journal of Cleaner Production, 243, 118697.

Yarnold, J., Karan, H., Oey, M., & Hankamer, B. (2019). Microalgal aquafeeds as part of a circular bioeconomy. Trends in plant science, 24(10), 959-970.

Yildirim-Aksoy, M., Eljack, R., Beck, B. H., & Peatman, E. (2022). Nutritional evaluation of frass from black soldier fly larvae as potential feed ingredient for Pacific white shrimp, Litopenaeus vannamei. Aquaculture Reports, 27, 101353.

Yu, X., He, Q., & Wang, D. (2021). Dynamic Analysis of Major Components in the Different Developmental Stages of Tenebrio molitor. Frontiers in Nutrition, 8, 689746.

Zarantoniello, M., Randazzo, B., Gioacchini, G., Truzzi, C., Giorgini, E., Riolo, P., ... & Olivotto, I. (2020). Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: A multidisciplinary approach. Scientific reports, 10(1), 1-16.

Zhang, Q., Liang, H., Longshaw, M., Wang, J., Ge, X., Zhu, J., ... & Ren, M. (2022). Effects of replacing fishmeal with methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) on growth and intestinal health status of juvenile largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology, 122, 298-305.

Zhou, Y. G., Davis, D. A., & Buentello, A. (2015). Use of new soybean varieties in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 21(5), 635-643.