PERIFITON Y SUS APLICACIONES EN LA ACUICULTURA
PERIPHYTON AND ITS APPLICATIONS IN AQUACULTURE
Contenido principal del artículo
Resumen
El perifiton es una comunidad de microrganismos que cumple una importante función en los ecosistemas acuáticos relacionada con el ciclo de nutrientes y producción primaria, características empleadas para el tratamiento de aguas residuales, siendo aprovechada la biomasa producida como biofertilizante o biocombustible. En el presente artículo se realizó una revisión bibliográfica de las aplicaciones que ha tenido esta comunidad de microorganismos en la acuicultura. Las primeras investigaciones en este campo se relacionaron con la inclusión de sustratos en tanques de producción acuícola de camarones y peces, donde la comunidad, mediante adición y/o captación de nutrientes generados, produce bioamasa que se usa como alimento. La introducción de sustratos en sistemas biofloc es un campo que se ha investigado en los últimos años, el cual reporta resultados prometedores en la producción de camarones, pero que requiere mayor investigación, especialmente en la producción piscícola. Tecnologías basadas en biofiltros perifiticos han demostrado porcentajes de retención cercanas al 100% de compuestos nitrogenados, donde la biomasa producida también es usada como alimento para las diferentes especies de cultivo. El perifiton también constituye una herramienta en el monitoreo de los efectos que tiene la industria sobre los ecosistemas acuáticos naturales. Por último, las ómicas son una herramienta que permitiría explorar las complejas relaciones entre las comunidades microbianas y sus efectos sobre los animales cultivados y la calidad de agua, que aún ha sido poco explorada.
Descargas
Detalles del artículo
Palabras clave:
Referencias (VER)
Abwao JO, Boera PN, Munguti JM, Orina PS, Erick O. The potential of periphyton based aquaculture for nile tilapia (Oreochromis niloticus L.) production . a review. International Journal of Fisheries and Aquatic Studies, 2014; 2(1): 147–152.
Addo FG, Zhang S, Manirakiza B, Ohore OE, Shudong Y. The impacts of straw substrate on biofloc formation, bacterial community and nutrient removal in shrimp ponds. Bioresource Technology, 2021; 326(124727): 1–11.
Adey WH, Kangas PC, Mulbry W. Algal turf scrubbing: Cleaning surface waters with solar energy while producing a biofuel. BioScience, 2011; 61(6): 434–441.
Adey WH, Laughinghouse HD, Miller JB, Hayek LAC, Thompson JG, Bertman S, Hampel K, Puvanendran S. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: Productivity, algal community structure, substrate and chemistry. Journal of Phycology, 2013; 49(3): 489–501.
Anand PSS, Kumar S, Panigrahi A, Ghoshal TK, Syama Dayal J, Biswas G, Sundaray JK, De D, Ananda Raja R, Deo AD, Pillai SM, Ravichandran P. Effects of C:N ratio and substrate integration on periphyton biomass, microbial dynamics and growth of Penaeus monodon juveniles. Aquaculture International, 2013; 21(2): 511–524.
Angeles-Escobar BE, da Silva SMBC, Severi W. Growth, red blood cells, and gill alterations of red pacu (Piaractus brachypomus) fingerlings by chronic exposure to different total suspended solids in biofloc. Journal of the World Aquaculture Society, 2022; 53(3): 652–668.
Asaduzzaman M, Wahab MA, Verdegem MCJ, Adhikary RK, Rahman SMS, Azim ME, Verreth JAJ. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems. Aquaculture, 2010; 301(1–4): 37–46.
Asaduzzaman M, Wahab MA, Verdegem MCJ, Huque S, Salam MA, Azim ME. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 2008; 280(1–4): 117–123.
Asaduzzaman M, Wahab MA, Verdegem MCJ, Mondal MN, Azim ME. Effects of stocking density of freshwater prawn Macrobrachium rosenbergii and addition of different levels of tilapia Oreochromis niloticus on production in C/N controlled periphyton based system. Aquaculture, 2009; 286(1–2): 72–79.
Azim ME, Milstein A, Wahab MA, Verdegam MCJ. Periphyton - Water quality relationships in fertilized fishponds with artificial substrates. Aquaculture, 2003; 228(1–4): 169–187.
Azim ME, Rahaman MM, Wahab MA, Asaeda T, Little DC, & Verdegem MCJ. Periphyton-based pond polyculture system: A bioeconomic comparison of on-farm and on-station trials. Aquaculture, 2004; 242: 381–396.
Azim ME, Verdegem MCJ, Mantingh I, Dam AA Van, Beveridge MCM. Ingestion and utilization of periphyton grown on artificial substrates. Aquaculture Research, 2003; 34(4): 85–92.
Azim ME, Wahab MA, Verdegem MCJ, Van Dam AA, Van Rooij JM, Beveridge MCM. The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquatic Living Resources, 2002; 15(4): 231–241.
Barbour MT, Gerritsen J, Snyder BD, Stribling JB. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers. Periphyton, Benthic Macroinvertebrates, and Fish. 1999. 2nd ed. US Environmental Protection Agency Office of water, Whasington, D.C., p. 339.
Barlaya G, Umalatha H, Hegde G, Ananda Kumar BS, Raghavendra CH. Growth performance, carcass composition, and digestive enzyme activity of Labeo fimbriatus in tanks provided with feed and periphyton substrate in two orientations. Journal of Applied Aquaculture, 2021; 1–12.
Barnharst T, Rajendran A, Hu B. Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm. International Biodeterioration Biodegradation, 2018; 126:131–142.
Beck WS, Markman DW, Oleksy IA, Lafferty MH, Poff NLR. Seasonal shifts in the importance of bottom–up and top–down factors on stream periphyton community structure. Oikos, 2019; 128(5): 680–691.
Biswas G, Kumar P, Ghoshal TK, Das S, De D, Bera A, Anand PSS, Kailasam M. Periphyton: A natural fish food item for replacement of feed at optimized substrate surface area for cost-effective production in brackishwater polyculture. Aquaculture, 2022; 561: 738672.
Carrera-Quintana SC, Gentile P, Girón-Hernández J. An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. Aquaculture, 2022; 561(738583).
Cavalcante DDH, Lima FR, Rebouças VT, Sá MV. Association between periphyton and bioflocs systems in intensive culture of juvenile Nile tilapia. Acta Scientiarum. Animal Sciences, 2016; 38(2): 119–125.
Cavalcante DDH, Lima FRDS, Rebouças VT, Sá MVDCE. Nile tilapia culture under feeding restriction in bioflocs and bioflocs plus periphyton tanks. Acta Scientiarum. Animal Sciences, 2017; 39(3): 223–228.
Chethurajupalli L, Tambireddy N. Rearing of White Leg Shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and Substrate Systems: Microbial Community of Water, Growth and Immune Response of Shrimp. Turkish Journal of Fisheries and Aquatic Sciences, 2022; 22(3): 1–15.
da Silva JLS, Cavalcante DDH, de Carvalho FCT, Vieira RHSDF, e Sá MVDC, de Sousa OV. Aquatic microbiota diversity in the culture of Nile tilapia ( Oreochromis niloticus ) using bioflocs or periphyton: virulence factors and biofilm formation. Acta Scientiarum. Animal Sciences, 2016; 38(3): 233–241.
David FS, Proença DC, Valenti WC. Phosphorus Budget in Integrated Multitrophic Aquaculture Systems with Nile Tilapia, Oreochromis niloticus, and Amazon River Prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 2017; 48(3): 402–414.
David LH, Pinho SM, Romera DM, Campos DWJ, Franchini AC, Garcia F. Tilapia farming based on periphyton as a natural food source. Aquaculture, 2022; 547(737544).
Durán-Izquierdo JC, Mindiola-Romo RJ, Wills-Franco GA, Pardo-Carrasco SC, Muñoz-Ramírez AP. Uso de perifiton en un sistema de policultivo en agro acuicultura integrada en la comunidad indígena de Jimaín (Colombia). Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 2020; 67(3): 262–275
de Lara GR, Poersch LH, Wasielesky W. The quantity of artificial substrates influences the nitrogen cycle in the biofloc culture system of Litopenaeus vannamei. Aquacultural Engineering, 2021; 94: 102171.
de Morais APM, Abreu PC, Wasielesky W, Krummenauer D. Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and clear water systems. Aquaculture, 2020; 514: 734516.
Emerenciano MGC, Arnold S, Perrin T. Sodium metasilicate supplementation in culture water on growth performance, water quality and economics of indoor commercial-scale biofloc-based Litopenaeus vannamei culture. Aquaculture, 2022; 560: 738566.
Fernandes Da Silva C, Ballester E, Monserrat J, Geracitano L, Wasielesky W, Abreu PC. Contribution of microorganisms to the biofilm nutritional quality: Protein and lipid contents. Aquaculture Nutrition, 2008; 14(6): 507–514.
Ferreira LMH, Lara G, Wasielesky W, Abreu PC. Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system? Aquaculture International, 2016; 24(4): 921–930.
FAO-Food Agriculture Organization. 2020. El estado mundial de la pesca y la acuicultura 2020. En: Organización de las Naciones Unidas para la Alimentación y la Agricultura. La sostenibilidad en acción, Roma, p. 223.
Gangadhar B, Sridhar N, Umalatha H, Ganesh H, Jayasankar P. Taxonomic and Biochemical Composition and Digestive Enzyme Activity of Periphyton and Plankton: A Comparative Study. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018; 88(2): 715–720.
Gangadhar B, Umalatha H, Hegde G, Vasundhara R, Sridhar N. Influence of Commonly used Manures on the Growth and Nutrient Composition of Periphyton. Insights Aquac Cult Biotechnol, 2017; 1(1): 1–6.
Gangadhara B, Keshavanath P. Planktonic and Biochemical Composition of Periphyton Grown on Some Biodegradable and Non-Degradable Substrates. Journal of Applied Aquaculture, 2008; 20213–232.
Garcia F, Romera DM, Sousa NS, Paiva-Ramos I, Onaka EM. The potential of periphyton-based cage culture of Nile tilapia in a Brazilian reservoir. Aquaculture, 2016; 464229–235.
García JJ, Celis LM, Villalba EL, Mendoza LC, Brú SB, Atencio VJ, Pardo SC. Evaluación del policultivo de bocachico Prochilodus magdalenae y tilapia Oreochromis niloticus utilizando superficies fijadoras de perifiton. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 2011; 58(2): 71–83.
Garg SK, Bhatnagar S. Influence of periphyton substrate density on hydrobiological characteristics and growth performance of Nile tilapia, Oreochromis niloticus (Linnaeus 1758) stocked in inland saline groundwater ponds. International Journal of Fisheries and aquatic studies, 2016; 4(4): 444–452.
Garg SK, Kumar A, Arasu ART, Bhatnagar A, Jana SN, Barman UK. Effect of periphyton and supplementary feeding on growth performance and nutritive physiology of Nile tilapia, Oreochromis niloticus, and pearlspot, Etroplus suratensis, under polyculture. Journal of Applied Aquaculture, 2007; 19(3): 19–45.
Gubelit YI, Grossart HP. New Methods, New Concepts: What Can Be Applied to Freshwater Periphyton? Frontiers in Microbiology,2008; 11(June), 1–11.
Guttman L, Neori A, Boxman SE, Barkan R, Shahar B, Tarnecki AM, Brennan NP, Main KL, Shpigel M. An integrated Ulva-periphyton biofilter for mariculture effluents: Multiple nitrogen removal kinetics. Algal Research, 2019; 42: 101586.
Haglund AL, Hillebrand H. The effect of grazing and nutrient supply on periphyton associated bacteria. FEMS Microbiology Ecology, 2005; 52(1): 31–41.
Han W, Mao Y, Wei Y, Shang P, Zhou X. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water, 2020; 12(2071): 1-16.
Haque MR, Islam MA, Rahman MM, Shirin MF, Wahab MA, Azim ME. Effects of C/N ratio and periphyton substrates on pond ecology and production performance in giant freshwater prawn Macrobrachium rosenbergii (De Man, 1879) and tilapia Oreochromis niloticus (Linnaeus, 1758) polyculture system. Aquaculture Research, 2015; 46(5): 1139–1155.
Hillebrand H, Kahlert M. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography, 2001; 46(8): 1881–1898.
Hondzo M, Wang H. Effects of turbulence on growth and metabolism of periphyton in a laboratory flume. Water Resources Research, 2002; 38(12): 13–1.
Jung JY, Damusaru JH, Park Y, Kim K, Seong M, Je HW, Kim S, Bai SC. Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal Research, 2017; 27259–264.
Kazmi SSUH, Uroosa, Warren A, Zhong X, Xu H. Insights into the ecotoxicity of nitrofurazone in marine ecosystems based on body-size spectra of periphytic ciliates. Marine Pollution Bulletin, 2022; 174: 113217.
Keshavanath P, Leao da Fonseca FA, Affonso EG, Nobre AD, Jeffson NP. Periphyton Growth on Three Bio-substrates and Its Influence on the Performance of Jaraqui (Semaprochilodus insignis). International Journal of Aquaculture, 2017; 7(13): 86–93.
Khatoon H, Banerjee S, Yusoff FM, Shariff M. Effects of salinity on the growth and proximate composition of selected tropical marine periphytic diatoms and cyanobacteria. Aquaculture Research, 2010; 41(9): 1348–1355.
Khatoon H, Yusoff F, Banerjee S, Shariff M, Bujang JS. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture, 2007a; 273(4): 470–477.
Khatoon H, Yusoff FM, Banerjee S, Shariff M, Mohamed S. Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality, survival and growth of Penaeus monodon Fabricius postlarvae. Aquaculture, 2007b; 271(1–4): 196–205.
Kumar S, Shyne Anand PS, De D, Ghoshal TK, Alavandi SV, Vijayan KK. Integration of substrate in biofloc based system: Effects on growth performance, water quality and immune responses in black tiger shrimp, Penaeus monodon culture. Aquaculture Research, 2019; 50(10): 2986–2999.
Lara G, Honda M, Poersch L, Wasielesky W. The use of biofilm and different feeding rates in biofloc culture system: the effects in shrimp growth parameters. Aquaculture International, 2017; 25(5): 1959–1970.
Li Z, Che J, Xie J, Wang G, Yu E, Xia Y, Yu D, Zhang K. Microbial succession in biofilms growing on artificial substratum in subtropical freshwater aquaculture ponds. FEMS Microbiology Letters, 2017; 364(4): 1–7.
Li Z, Yu E, Zhang K, Gong W, Xia Y, Tian J, Wang G, Xie J. Water Treatment Effect, Microbial Community Structure, and Metabolic Characteristics in a Field-Scale Aquaculture Wastewater Treatment System. Frontiers in Microbiology, 2020; 11(June): 1–13.
Liu J, Wang F, Liu W, Tang C, Wu C, Wu Y. Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton: From laboratory tank to polluted river. Bioresource Technology, 2016; 207142–149.
Mani S, Mullaivanam Ramasamy S, Chakrapani S, Krishna A, Shyne Anand PS, Lalramchhani C, Antony J, Panigrahi A. The effect of natural and artificial periphytic substrates with biofloc system on shrimp Penaeus vannamei (Boone 1931) culture: growth and immune response. Aquaculture International, 2021; 29(2): 651–668.
Mannino AM, Sara G. Effects of fish-farm biodeposition on periphyton assemblages on artificial substrates in the southern Tyrrhenian Sea (Gulf of Castellammare, Sicily). Aquatic Ecology, 2008; 42(4): 575–581.
Marioni D, Kassan NA, Ikhwanuddin M. Review of Attached and Suspended Biomass Applications Integrated to Recirculating Aquaculture Systems. IOP Conference Series: Earth and Environmental Science, 2020; 416(1): .
Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M. Microbial-based systems for aquaculture of fish and shrimp: An updated review. Reviews in Aquaculture, 2015; 7(2): 131–148.
Martinez-Porchas M, Ezquerra-Brauer M, Mendoza-Cano F, Chan-Higuera JE, Vargas-Albores F, Martinez-Cordova LR. Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei. Aquaculture Reports, 2020; 16: 100257.
Martins TG, Odebrecht C, Jensen LV, D’Oca MG, Wasielesky W. The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquaculture Research, 2014; 1–12.
Milsteina A, Azim ME, Wahab MA, Verdegem MCJ. The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds. Environmental Biology of Fishes, 2003; 68247–260.
Mohamed Ramli N, Yusoff FM, Giatsis C, Tan GYA, Verreth JAJ, Verdegem MCJ. Effects of Stigeoclonium nanum, a freshwater periphytic microalga on water quality in a small-scale recirculating aquaculture system. Aquaculture Research, 2018; 49(11): 3529–3540.
Montuelle B, Dorigo U, Bérard A, Volat B, Bouchez A, Tlili A, Gouy V, Pesce S. The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France). 2010. En: Stevenson RJ, Sabater S (editores). Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services.Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services. Developments in Hydrobiology, p. 123–141.
Naspirán-Jojoa DC, Fajardo-Rosero AG, Ueno-Fukura M, Collazos-Lasso LF. Perspectivas de una producción sostenible en acuicultura multitrófica integrada (IMTA): Una revisión. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 2022; 69(1): 75-97.
Neori A, Shpigel M, Guttman L, Israel A. Development of polyculture and integrated multi - trophic aquaculture (IMTA) in Israel: A review. Israeli Journal of Aquaculture - Bamidgeh, 2017; 69: 1–19.
Peiro-Alcantar CI, Miranda-Baeza A, Garibay-Valdez E, Martínez-Córdova LR, Vargas-Albores F, Cicala F, Gómez-Reyes R, Martínez-Porchas M. Mature biofloc harbor similar bacterial communities regardless of the vegetal floating substrates (oat, amaranth, or wheat) used as promoters. Aquaculture International, 2022; 91–15.
Ramli NM, Verreth JAJ, Yusoff FM, Nurulhuda K, Nagao N, Verdegem MCJ. Integration of Algae to Improve Nitrogenous Waste Management in Recirculating Aquaculture Systems: A Review. Frontiers in Bioengineering and Biotechnology, 2020; 8(1004): 1–18.
Ramos-Tortolero SA, Sagratski-Cavero BA, Gomes deBrito J, Soares-Correa C, da Silva-Junior JL, de Barlaya-Almeida JC, Barlaya G, Perar K. Periphyton-Based Jaraqui (Semaprochilodus insignis) Culture with Two Types of Substrates at Different Densities. Turkish Journal of Fisheries and Aquatic Sciences, 2016; 16(4): 953–959.
Ray AJ, Lewis BL, Browdy CL, Leffler JW. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 2010; 299(1–4): 89–98.
Ray NE, Terlizzi DE, Kangas PC. Nitrogen and phosphorus removal by the Algal Turf Scrubber at an oyster aquaculture facility. Ecological Engineering, 2015; 7827–32.
Rivera-Usme JJ, Pinilla-Agudelo G, Camacho Pinzón DL. Grupos tróficos de macroinvertebrados acuáticos en un humedal urbano andino de Colombia. Acta Biológica Colombiana, 2013; 18(2): 279–292.
Rodrigues CG, Garcia BF, Verdegem M, Santos MR, Amorim R V., Valenti WC. Integrated culture of Nile tilapia and Amazon river prawn in stagnant ponds, using nutrient-rich water and substrates. Aquaculture, 2019; 503111–117.
Ruby P, Ahilan B, Prabu E. Periphyton Based Aquaculture: a Review. Journal of Aquaculture in the Tropics, 2018; 33(01): 35–48.
Saikia SK, Das DN. Potentiality of Periphyton-based Aquaculture Technology in Rice-fish Environment. Journal of Scientific Research, 2009; 1(3): 624–634.
Salvi KP, da Silva Oliveira W, Horta PA, Rörig LR, de Oliveira Bastos E. A new model of Algal Turf Scrubber for bioremediation and biomass production using seaweed aquaculture principles. Journal of Applied Phycology, 2021; 33(4): 2577–2586.
Santhana Kumar V, Pandey PK, Anand T, Bhuvaneswari R, Kumar S. Effect of periphyton (aquamat) on water quality, nitrogen budget, microbial ecology, and growth parameters of Litopenaeus vannamei in a semi-intensive culture system. Aquaculture, 2017; 479: 240–249.
Sanz-Lázaro C, Navarrete-Mier F, Marín A. Biofilm responses to marine fish farm wastes. Environmental Pollution, 2011; 159(3): 825–832.
Savonitto G, Barkan R, Harpaz S, Neori A, Chernova H, Terlizzi A, Guttman L. Fishmeal replacement by periphyton reduces the fish in fish out ratio and alimentation cost in gilthead sea bream Sparus aurata. Scientific Reports 2021 11:1, 2021; 11(1): 1–10.
Schveitzer R, Arantes R, Baloi MF, Costódio PFS, Arana LV, Seiffert WQ, Andreatta ER. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquacultural Engineering, 2013; 54: 93–103.
Shahar B, Guttman L. An integrated, two-step biofiltration system with Ulva fasciata for sequenced removal of ammonia and nitrate in mariculture effluents. Algal Research, 2020; 52: 102120.
Shahar B, Guttman L. Integrated biofilters with Ulva and periphyton to improve nitrogen removal from mariculture effluent. Aquaculture, 2021; 532: 736011.
Sharif Uddin M, Milsten A, Ekram Azim M, Abdul Wahab M, Verdegem M, Verreth J. Effects of stocking density, periphyton substrate and supplemental feed on biological processes affecting water quality in earthen tilapia–prawn polyculture ponds. Aquaculture Research, 2008; 39(12): 1243–1257.
Sheng G, Yu H, Li X. Extracellular polymeric substances ( EPS ) of microbial aggregates in biological wastewater treatment systems : A review. Biotechnology Advances, 2010; 28(6): 882–894.
Shilta MT, Chadha NK, Pandey PK, Sawant PB. Effect of biofilm on water quality and growth of Etroplus suratensis (Bloch, 1790). Aquaculture International, 2016; 24(2): 661–674.
Shpigel M, Guttman L, Shauli L, Odintsov V, Ben-Ezra D, Harpaz S. Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet. Aquaculture, 2017; 481: 112–118.
Shyne-Anand PS, Kohli MPS, Dam Roy S, Sundaray JK, Kumar S, Sinha A, Pailan GH, Sukham M kumar. Effect of dietary supplementation of periphyton on growth, immune response and metabolic enzyme activities in Penaeus monodon. Aquaculture Research, 2015; 46(9): 2277–2288.
Singh S, James A, Bharose R. Biological assessment of water pollution using periphyton productivity: A review. Nature Environment and Pollution Technology, 2017; 16(2): 559–567.
Suryakumar B, Avnimelech Y. Adapting Biofloc Technology for Use in Small Scale Ponds with Vertical Substrate. World Aquaculture, 2017; 48(3): 54–58.
Tammam MS, Wassef EA, Toutou MM, El-Sayed AFM. Combined effects of surface area of periphyton substrates and stocking density on growth performance, health status, and immune response of Nile tilapia (Oreochromis niloticus) produced in cages. Journal of Applied Phycology, 2020; 32(5): 3419–3428.
Tramonte RP, Osório NC, Ragonha FH, Pinha GD, Rodrigues L, Mormul RP. Periphyton consumption by an invasive snail species is greater in simplified than in complex habitats. Canadian Journal of Zoology, 2019; 97(1): 13–21.
Trbojević I, Jovanović J, Kostić D, Popović S, Predojević D, Karadžić V, Simić GS. Periphyton Developed on Artificial Substrates: Effect of Substrate Type and Incubation Depth . Russian Journal of Ecology, 2018; 49(2): 135–142.
Umalatha UH, Gangadhar B, Sridhar N, Umalatha H, Ganesh H, Simon ART, Jayasankar P. Digestibility and digestive enzyme activity in Labeo fimbriatus (Bloch, 1795) fed periphyton grown on sugarcane bagasse. Article in Indian Journal of Fisheries, 2017; 64(1): 37–43.
Uroosa, Kazmi SSUH, Zhong X, Xu H. An approach to evaluating the acute toxicity of nitrofurazone on community functioning using protozoan periphytons. Marine Pollution Bulletin, 2021; 173(113066): 1-8.
Valchev D, Ribarova I. A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes; 10(399): 1-28.
Valeta J, Verdegem M. Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system. Aquaculture Research, 2015; 46(4): 945–951.
Wang Z, Yin S, Chou Q, Zhou D, Jeppesen E, Wang L, Zhang W. Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride. Environmental Pollution, 2022; 294(118593).
Wetzel RG. Periphyton of freshwater ecosystems.1983. En: Proceedings of the First International Workshop on Periphyton of Freshwater Ecosystems held in Vaxjo, Sweden (p. 346). Dr. W. Junk Publishers, The Netherlands, p.346.
Wu Y. Periphyton. 2017. Functions and Application in Environmental Remediation. Elsevier, Amsterdam, p. 402.
Wu Y, Xia L, Yu Z, Shabbir S, Kerr PG. In situ bioremediation of surface waters by periphytons. Bioresource Technology, 2014; 151: 367–372.
Yadav SR, Chavan BR, Chadha NK, Naik SD, K KK, Sawant PB. Algal-bacterial intervention as a management tool for next-generation aquaculture sustainability. Journal of environmental biology, 2022; 43: 485–497.
Yu E, Xie J, Wang J, Ako H, Wang G, Chen Z, Liu Y. Surface-attached and suspended bacterial community structure as affected by C/N ratios: relationship between bacteria and fish production. World Journal of Microbiology and Biotechnology, 2016; 32(116): 1–9.
Zhang N, Li H, Jeppesen E, Li W. Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lake. Hydrobiologia, 2013; 710(1): 129–141.