Tecnología biofloc en la acuicultura: estado de avance, desarrollo y aplicación

Biofloc technology in aquaculture: progress, development and application status

Contenido principal del artículo

Miguel A Landines

Resumen

La producción acuícola con tecnología biofloc se ha constituido como una alternativa técnica emergente que favorece la eficiencia en el uso del agua, permite la recuperación de nutrientes disueltos y sedimentados en el agua y reduce las emisiones contaminantes. A lo largo de este documento se muestran sus bases técnicas generales, los tipos de biofloc, tipo de comunidades microbianas predominantes y su papel en el manejo y aprovechamiento de compuestos nitrogenados. Por otro lado, se discuten las necesidades de mantener un adecuado balance de carbono y nitrógeno (C: N), así como las diversas fuentes de carbono (C) empleadas a nivel experimental y comercial para cumplir con dicho propósito. De igual forma, se tratan aspectos fundamentales como las condiciones de calidad y cantidad de agua para operar estos sistemas y los compuestos a ser monitoreados como parte del esquema de manejo. Finalmente, se explora el valor del biofloc como recurso alimenticio, la importancia de la selección de especies acuícolas compatibles con esta técnica, los resultados favorables obtenidos en materia de respuesta inmune, resistencia a enfermedades, biocontrol y uso de probióticos en el marco de la bioseguridad, la sostenibilidad económica, así como las ventajas, desventajas y perspectivas en la aplicación de este método productivo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

Abakari, G. Luo, G. Kombat, E. O. & Alhassan, E. H. 2020. Supplemental carbon sources applied in biofloc technology aquaculture systems: types, effects and future research. Reviews in Aquaculture. https://doi.org/10.1111/raq.12520

Abdel-Fattah M. El-Sayed. 2020. Use of biofloc technology in shrimp aquaculture: a

comprehensive review, with emphasis on the last decade. Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt. https://doi.org/10.1111/raq.12494

Adineh, H. Naderi, M. Khademi Hamidi, M. & Harsij, M. 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology, 95(September), 440–448. https://doi.org/10.1016/j.fsi.2019.10.057

Alkhamis, Y. A. Sultana, A. Arafat, S. T. Rouf, M. A. Rahman, S. M. Mathew, R. T. & Ganesan, N. (2023). The impact of biofloc technology on water quality in aquaculture: A systematic meta-analysis. Aquaculture Nutrition. https://doi.org/10.1155/2023/9915874

Anand, P. S. Kohli, M. P. S. Kumar, S. Sundaray, J. K. Roy, S. D. Venkateshwarlu, G. ... & Pailan, G. H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418, 108-115. https://doi.org/10.1016/j.aquaculture.2013.09.051

Antonio de Lorenzo, M. Schveitzer, R. Santo, C. M. do E. Candia, E. W. S. Mouriño, J.

L. P. Legarda, E. C. Seiffert, W. Q. & Vieira, F. do N. 2015. Intensive hatchery performance of the Pacific white shrimp in biofloc system. Aquacultural Engineering, 67, 53–58. https://doi.org/10.1016/j.aquaeng.2015.05.007

Asaduzzaman, M. Wahab, M. A. Verdegem, M. C. J. Huque, S. Salam, M. A. & Azim, M. E. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280(1-4), 117-123. https://doi.org/10.1016/j.aquaculture.2008.04.019

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X

Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1–4), 140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Azim, M. E. Little, D. C. & Bron, J. E. 2008. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresource Technology, 99(9), 3590-3599. https://doi.org/10.1016/j.biortech.2007.07.063

Bacchetta, C. Rossi, A. S. Ale, A. & Cazenave, J. 2020. Physiological effects of

stocking density on the fish Piaractus mesopotamicus fed with red seaweed (Pyropia columbina) and β-carotene-supplemented diets. Aquaculture Research, 51(5), 1992–2003. https://doi.org/10.1111/are.14551

Becerril-Cortés, D. Monroy-Dosta, M. del C. Coelho-Emerenciano, M. G. Castro-Mejía, G. Cienfuegos-Martínez, K. & de Lara-Andrade, R. 2017. Nutritional importance for aquaculture and ecological function of microorganisms that make up Biofloc, a review. Int. J. of Aquatic Science, 8(2), 69–77.

Bossier, P. & Ekasari, J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial biotechnology, 10(5), 1012-1016. https://doi.org/10.1111/1751-7915.12836

Braga, A. Magalhães, V. Hanson, T. Morris, T. C. & Samocha, T. M. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquaculture Reports, 3, 172–177. https://doi.org/10.1016/j.aqrep.2016.03.002

Burford, M. A. Thompson, P. J. McIntosh, R. P. Bauman, R. H. & Pearson, D. C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1-4), 525-537. https://doi.org/10.1016/S0044-8486(03)00541-6

Chan-Vivas, E. Edén, M. G. Maldonado, C. Escalante, K. Gaxiola, G. & Cuzon, G. 2019. Does Biofloc Improve the Energy Distribution and Final Muscle Quality of Shrimp, Litopenaeus vannamei (Boone, 1883)? Journal of the World Aquaculture Society, 50(2), 460–468. https://doi.org/10.1111/jwas.12522

Chen, X. Luo, G. Meng, H. & Tan, H. 2019. Effect of the particle size on the ammonia removal rate and the bacterial community composition of bioflocs. Aquacultural Engineering, 86, 102001. https://doi.org/10.1016/j.aquaeng.2019.102001

Cienfuegos M K, Monroy D, Hamdan P. A, Castro M. J y Becerril C. D. 2017. Probiotics used in Biofloc system for fish and crustacean culture: A review. International Journal of Fisheries and Aquatic Studies 2017; 5(5): 120-125

Collazos, L. F. & Arias, J. A. 2015. Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia, 19(1), 77. https://doi.org/10.22579/20112629.341

Contreras-Sillero, M. E. Pacheco-Vega, J. M. Valdez-González, F. J. De La Paz-Rodríguez, G. Cadena-Roa, M. A. Bautista-Covarrubias, J. C. & Godínez-Siordia, D. E. 2020. Polyculture of White shrimp (Penaeus vannamei) and sea cucumber (Holothuria inornata) in a biofloc system. Aquaculture Research, 51(11), 4410-4420. https://doi.org/10.1111/are.14782

Crab, R. Defoirdt, T. Bossier, P. & Verstraete, W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356–357, 351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046

Dauda, A. B. 2020. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 12(2), 1193–1210. https://doi.org/10.1111/raq.12379

Davidson, J. Helwig, N. & Summerfelt, S. T. 2008. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent. Aquacultural engineering, 39(1), 6-15. https://doi.org/10.1016/j.aquaeng.2008.04.002

Defoirdt, T. Boon, N. Bossier, P. Verstraete, W. 2004. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240 (1–4), 69–88. https://doi.org/10.1016/j.aquaculture.2004.06.031

De Oliveira Alves, G. F. Fernandes, A. F. A. de Alvarenga, É. R. Turra, E. M. de Sousa, A. B. & de Alencar Teixeira, E. 2017. Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479(August 2016), 564–570. https://doi.org/10.1016/j.aquaculture.2017.06.029

De Schryver, P. Crab, R. Defoirdt, T. Boon, N. & Verstraete, W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4), 125–137. https://doi.org/10.1016/j.aquaculture.2008.02.019

De Souza, D. M. Suita, S. M. Romano, L. A. Wasielesky Jr, W. & Ballester, E. L. C. 2014. Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquaculture Research, 45(2), 270-277. https://doi.org/10.1111/j.1365-2109.2012.03223.x

Dong, S. Li, Y. Jiang, F. Hu, Z. & Zheng, Y. (2021). Performance of Platymonas and microbial community analysis under different C/N ratio in biofloc technology aquaculture system. Journal of Water Process Engineering, 43, 102257. https://doi.org/10.1016/j.jwpe.2021.102257

Ebeling, J. M. Timmons, M. B. & Bisogni, J. J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Ekasari, J. Angela, D. Waluyo, S. H. Bachtiar, T. Surawidjaja, E. H. Bossier, P. & De Schryver, P. 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426–427, 105–111. https://doi.org/10.1016/j.aquaculture.2014.01.023

Ekasari, J. Rivandi, D. R. Firdausi, A. P. Surawidjaja, E. H. Zairin, M. Bossier, P. & De Schryver, P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72–77. https://doi.org/10.1016/j.aquaculture.2015.02.019

Emerenciano, M. Gaxiola, G. & Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. IntechOpen. https://doi:10.5772/53902

Emerenciano, Ballester, E. L. C. Cavalli, R. O. & Wasielesky, W. 2011. Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891–901. https://doi.org/10.1007/s10499-010-9408-6

FAO. 2020. El Estado de la pesca y la acuicultura mundial, SOFIA 2020. In Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/ca9229es

Fimbres-Acedo, Y. E. Servín-Villegas, R. Garza-Torres, R. Endo, M. Fitzsimmons, K. M. Emerenciano, M. G. C. Magallón-Servín, P. López-Vela, M. y Magallón-Barajas, F. J. 2020. Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquaculture Research, 51(10), 4340–4360. https://doi.org/10.1111/are.14779

Gallardo-Collí, A. Pérez-Fuentes, M. Pérez-Rostro, C. I. & Hernández-Vergara, M. P. 2020. Compensatory growth of Nile tilapia Oreochromis niloticus, L. subjected to cyclic periods of feed restriction and feeding in a biofloc system. Aquaculture Research, 51(5), 1813–1823. https://doi.org/10.1111/are.14530

Green, B. W. Schrader, K. K. & Perschbacher, P. W. 2014. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquaculture Research, 45(9), 1442–1458. https://doi.org/10.1111/are.12096

Halim, M. A. 2019. Biofloc technology in aquaculture and its potentiality: A review. International Journal of Fisheries and Aquatic Studies, 7(5), 260–266. E-ISSN: 2347-5129. P-ISSN: 2394-0506

Hargreaves JA. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering 34: 344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009

Himaja, P.H.S.R.I. 2016. Review on Biofloc Meal As an Alternative Ingredient in Aquaculture Feeds. Journal of Aquaculture in the Tropics, 31(3–4), 199–220.

Holstein, T. E. 2019. Ecosystem Dynamics of a Microbial Biofloc Community Used to Culture Pacific White Shrimp ( Litopenaeus vannamei ). The University of Arizona. Copyright. http://hdl.handle.net/10150/620702

Hoseinifar, S. H. Ahmadi, A. Khalili, M. Raeisi, M. Van Doan, H. & Caipang, C. M. 2017. The study of antioxidant enzymes and immune-related genes expression in common carp (Cyprinus carpio ) fingerlings fed different prebiotics. Aquaculture Research, 48(11), 5447. https://doi.org/10.1111/are.13359

Iber, B. T. Benjamin, I. C. Nor, M. N. M. Abdullah, S. R. S. Shafie, M. S. B. Hidayah, M. ... & Kasan, N. A. (2025). Application of Biofloc technology in shrimp aquaculture: A review on current practices, challenges, and future perspectives. Journal of Agriculture and Food Research, 101675. https://doi.org/10.1016/j.jafr.2025.101675

Jatobá, A. Da Silva, B. C. Da Silva, J. S. Vieira, F. do N. Mouriño, J. L. P. Seiffert, W. Q. & Toledo, T. M. 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture, 432, 365–371. https://doi.org/10.1016/j.aquaculture.2014.05.005

Jiang, H. Zhang, Z. Lin, Z. Gong, X. Guo, H. & Wang, H. 2021. Modification of polyurethane sponge filler using medical stones and application in a moving bed biofilm reactor for ex situ remediation of polluted rivers. Journal of Water Process Engineering, 42, 102189. https://doi.org/10.1016/j.jwpe.2021.102189

Khanjani, M. H. Sharifinia, M. & Emerenciano, M. G. C. (2024). Biofloc technology (BFT) in aquaculture: What goes right, what goes wrong? A scientific‐based snapshot. Aquaculture Nutrition, 2024(1), 7496572. https://doi.org/10.1155/2024/7496572

Krummenauer, D. Peixoto, S. Cavalli, R. O. Poersch, L. H. & Wasielesky, W. 2011. Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in Southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726–733. https://doi.org/10.1111/j.1749-7345.2011.00507.x

Lalloo, R. Ramchuran, S. Ramduth, D. Görgens, J. & Gardiner, N. 2007. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. Journal of Applied Microbiology, 103(5), 1471–1479. https://doi.org/10.1111/j.1365-2672.2007.03360.x

Li, J. Liu, G. Li, C. Deng, Y. Tadda, M. A. Lan, L. ... & Liu, D. 2018. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 495, 919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078

Liang, D. Hu, Y. Liang, D. Chenga, J. & Chena, Y. 2021. Bioaugmentation of Moving Bed Biofilm Reactor (MBBR) with Achromobacter JL9 for enhanced sulfamethoxazole (SMX) degradation in aquaculture wastewater. Ecotoxicology and Environmental Safety, 207, 111258. https://doi.org/10.1016/j.ecoenv.2020.111258

Liu, H. Li, H. Wei, H. Zhu, X. Han, D. Jin, J. ... & Xie, S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506, 256-269. https://doi.org/10.1016/j.aquaculture.2019.03.031

Liu, W. Du, X. Tan, H. Xie, J. Luo, G. & Sun, D. 2021. Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies. Science of the Total Environment, 754, 141918. https://doi.org/10.1016/j.scitotenv.2020.141918

Long, L. Yang, J. Li, Y. Guan, C. & Wu, F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448, 135–141. https://doi.org/10.1016/j.aquaculture.2015.05.017

Luo, G. Gao, Q. Wang, C. Liu, W. Sun, D. Li, L. & Tan, H. 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423, 1–7. https://doi.org/10.1016/j.aquaculture.2013.11.023

Luo, G. Zhang, N. Tan, H. Hou, Z. & Liu, W. (2017). Efficiency of producing bioflocs with aquaculture waste by using poly-β-hydroxybutyric acid as a carbon source in suspended growth bioreactors. Aquacultural Engineering, 76, 34-40. https://doi.org/10.1016/j.aquaeng.2017.01.001

Mandario, M. A. E. 2020. Survival, growth and biomass of mud polychaete Marphysa iloiloensis (Annelida: Eunicidae) under different culture techniques. Aquaculture Research, 51(7), 3037–3049. https://doi.org/10.1111/are.14649

Manzoor, P. S. Rawat, K. D. Tiwari, V. K. Poojary, N. & Asanaru Majeedkutty, B. R. 2020. Dietary lipid influences gonadal maturation, digestive enzymes and serum biochemical indices of Cyprinus carpio reared in biofloc system. Aquaculture Research, 51(8), 3244–3254. https://doi.org/10.1111/are.14659

Martínez-Córdova, L. R. Emerenciano, M. Miranda-Baeza, A. & Martínez-Porchas, M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An update review. Reviews in Aquaculture, 7(2), 131–148. https://doi.org/10.1111/raq.12058

Martínez-Montaño, Emmanuel, Rodríguez-Montes de Oca, Gustavo A. Román-Reyes, José C. Pacheco-Marges, Rosario, Llanos, Alejandro, & Bañuelos-Vargas, Isaura. (2020). Diatomaceous earth application to improve shrimp aquaculture: growth performance and proximate composition of Penaeus vannamei juveniles reared in biofloc at two salinities. Latin american journal of aquatic research, 48(2), 197-206. https://dx.doi.org/10.3856/vol48-issue2-fulltext-2386

Medina, J. 2018. Fundamentos de innovación tecnológica en acuicultura intensiva - 2018 - (D. Mojica, H. Landínes, M. y Rivas (ed.)). Oficina de Generación del Conocimiento y la Información, Autoridad Nacional de Acuicultura y Pesca AUNAP ©, 265 p.

Minaz, M. Sevgili, H. & Aydın, İ. (2024). Biofloc technology in aquaculture: advantages and disadvantages from social and applicability perspectives–a review. Annals of Animal Science, 24(2), 307-319. https://intapi.sciendo.com/pdf/10.2478/aoas-2023-0043

Mirzakhani, N. Ebrahimi, E. Jalali, S. A. H. & Ekasari, J. 2019. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512(November 2018), 734235. https://doi.org/10.1016/j.aquaculture.2019.734235

Moss, S. M. Moss, D. R. Arce, S. M. Lightner, D. V. & Lotz, J. M. 2012. The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. Journal of Invertebrate Pathology, 110(2), 247– 250. https://doi.org/10.1016/j.jip.2012.01.013

Ødegaard H, Gisvold B, Strickland J. 2000. The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology 41: 383– 391. https://doi.org/10.2166/wst.2000.0470

Ogello, E. O. Musa, S. M. Aura, C. M. & Abwao, J. O. 2014. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology : A review. Int. J. Aquat. Sci. 5, 21–39

Park, J. Roy, L. A. Renukdas, N. & Luna, T. 2017. Evaluation of a Biofloc System for Intensive Culture of Fathead Minnows, Pimephales promelas. Journal of the World Aquaculture Society, 48(4), 592–601. https://doi.org/10.1111/jwas.12387

Pérez-Fuentes, J. A. Pérez-Rostro, C. I. & Hernández-Vergara, M. P. 2013. Pond-reared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture, 400–401, 105–110. https://doi.org/10.1016/j.aquaculture.2013.02.028

Poli, M. A. Schveitzer, R. & de Oliveira Nuñer, A. P. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquacultural Engineering, 66, 17–21. https://doi.org/10.1016/j.aquaeng.2015.01.004

Poli, M. A. Legarda, E. C. de Lorenzo, M. A. Pinheiro, I. Martins, M. A. Seiffert, W. Q. & do Nascimento Vieira, F. 2019. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture, 511, 734274. https://doi.org/10.1016/j.aquaculture.2019.734274

Rajkumar, M. Pandey, P. K. Aravind, R. Vennila, A. Bharti, V. & Purushothaman, C. S. 2015. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47(11), 3432–3444. https://doi.org/10.1111/are.12792

Ray, A. J. Dillon, K. S. & Lotz, J. M. 2011. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001

Ridha, M. T. Hossain, M. A. Azad, I. S. & Saburova, M. 2020. Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquaculture Research, 51(10), 4225–4237. https://doi.org/10.1111/are.14764

Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Schveitzer, R. Fonseca, G. Orteney, N. Menezes, F. C. T. Thompson, F. L. Thompson, C. C. & Gregoracci, G. B. 2020. The role of sedimentation in the structuring of microbial communities in biofloc-dominated aquaculture tanks. Aquaculture, 514, 734493. https://doi.org/10.1016/j.aquaculture.2019.734493

Shao, J. Liu, M. Wang, B. Jiang, K. Wang, M. & Wang, L. 2017. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway. Aquaculture, 479, 516-521. https://doi.org/10.1016/j.aquaculture.2017.06.034

Sherr B, Sherr E, Marine microbes: an overview. En: Kirchman D. (Ed) Microbial Ecology of the Oceans. Wiley-Liss, New York; 2000:13-46.

Wang, R. Xu, Q. Chen, C. Li, X. Zhang, C. & Zhang, D. 2021. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials. Bioresource Technology, 331, 125045. https://doi.org/10.1016/j.biortech.2021.125045

Wang, Y. Chen, Z. Chang, Z. Zhang, S. Meng, G. & Li, J. (2024). Comparison of economic and ecological benefits between factory water exchange model and biofloc model based on meta analysis. Aquaculture, 741907. https://doi.org/10.1016/j.aquaculture.2024.741907

Wasielesky, W. Atwood, H. Stokes, A. & Browdy, C. L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1–4), 396–403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Xie, W. Pan, L. Sun, X. & Huang, J. 2012. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero -water exchange culture tanks. Aquaculture research, 1-10. https://doi.org/10.1111/j.1365-2109.2012.03115.x

Xu, W. J. & Pan, L. Q. 2014. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture, 426–427, 181–188. https://doi.org/10.1016/j.aquaculture.2014.02.003

Xu, W. J. Pan, L. Q. Sun, X. H. & Huang, J. 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquaculture Research, 44(7), 1093–1102. https://doi.org/10.1111/j.1365-2109.2012.03115.x

Xu, W. J. Morris, T. C. & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169-175. https://doi.org/10.1016/j.aquaculture.2015.11.021

Yu Z, Li L, Li M, y Wu L-F. 2020. Dietary supplementation of microbial floc heightens growth and improves digestive, immune, antioxidant enzymes activity and ammonia resistance in Opsariichthys kaopingensis. Aquaculture Research. 51(10), 4054–4064. doi.org/10.1111/are.14748

Yu, Y. B. Choi, J. H. Lee, J. H. Jo, A. H. Lee, K. M. & Kim, J. H. 2023. Biofloc technology in fish aquaculture: A review. Antioxidants, 12(2), 398. https://doi.org/10.3390/antiox12020398

Zhang, A., Shen, H., Zhang, X., Wang, T., Mei, F., Jeyakumar, D. T., ... & Xu, Z. (2025). The role of microalgae in Penaeus vannamei aquaculture: Exploring the importance of biofloc technology. Aquaculture, 742397. https://doi.org/10.1016/j.aquaculture.2025.742397