Tecnología biofloc en la acuicultura: estado de avance, desarrollo y aplicación
Biofloc technology in aquaculture: progress, development and application status
Contenido principal del artículo
Resumen
La producción acuícola con tecnología biofloc se ha constituido como una alternativa técnica emergente que favorece la eficiencia en el uso del agua, permite la recuperación de nutrientes disueltos y sedimentados en el agua y reduce las emisiones contaminantes. A lo largo de este documento se muestran sus bases técnicas generales, los tipos de biofloc, tipo de comunidades microbianas predominantes y su papel en el manejo y aprovechamiento de compuestos nitrogenados. Por otro lado, se discuten las necesidades de mantener un adecuado balance de carbono y nitrógeno (C: N), así como las diversas fuentes de carbono (C) empleadas a nivel experimental y comercial para cumplir con dicho propósito. De igual forma, se tratan aspectos fundamentales como las condiciones de calidad y cantidad de agua para operar estos sistemas y los compuestos a ser monitoreados como parte del esquema de manejo. Finalmente, se explora el valor del biofloc como recurso alimenticio, la importancia de la selección de especies acuícolas compatibles con esta técnica, los resultados favorables obtenidos en materia de respuesta inmune, resistencia a enfermedades, biocontrol y uso de probióticos en el marco de la bioseguridad, la sostenibilidad económica, así como las ventajas, desventajas y perspectivas en la aplicación de este método productivo.
Descargas
Detalles del artículo
Referencias
Abakari, G. Luo, G. Kombat, E. O. & Alhassan, E. H. 2020. Supplemental carbon sources applied in biofloc technology aquaculture systems: types, effects and future research. Reviews in Aquaculture. https://doi.org/10.1111/raq.12520
Abdel-Fattah M. El-Sayed. 2020. Use of biofloc technology in shrimp aquaculture: a
comprehensive review, with emphasis on the last decade. Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt. https://doi.org/10.1111/raq.12494
Adineh, H. Naderi, M. Khademi Hamidi, M. & Harsij, M. 2019. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology, 95(September), 440–448. https://doi.org/10.1016/j.fsi.2019.10.057
Alkhamis, Y. A. Sultana, A. Arafat, S. T. Rouf, M. A. Rahman, S. M. Mathew, R. T. & Ganesan, N. (2023). The impact of biofloc technology on water quality in aquaculture: A systematic meta-analysis. Aquaculture Nutrition. https://doi.org/10.1155/2023/9915874
Anand, P. S. Kohli, M. P. S. Kumar, S. Sundaray, J. K. Roy, S. D. Venkateshwarlu, G. ... & Pailan, G. H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418, 108-115. https://doi.org/10.1016/j.aquaculture.2013.09.051
Antonio de Lorenzo, M. Schveitzer, R. Santo, C. M. do E. Candia, E. W. S. Mouriño, J.
L. P. Legarda, E. C. Seiffert, W. Q. & Vieira, F. do N. 2015. Intensive hatchery performance of the Pacific white shrimp in biofloc system. Aquacultural Engineering, 67, 53–58. https://doi.org/10.1016/j.aquaeng.2015.05.007
Asaduzzaman, M. Wahab, M. A. Verdegem, M. C. J. Huque, S. Salam, M. A. & Azim, M. E. 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280(1-4), 117-123. https://doi.org/10.1016/j.aquaculture.2008.04.019
Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X
Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1–4), 140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Azim, M. E. Little, D. C. & Bron, J. E. 2008. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresource Technology, 99(9), 3590-3599. https://doi.org/10.1016/j.biortech.2007.07.063
Bacchetta, C. Rossi, A. S. Ale, A. & Cazenave, J. 2020. Physiological effects of
stocking density on the fish Piaractus mesopotamicus fed with red seaweed (Pyropia columbina) and β-carotene-supplemented diets. Aquaculture Research, 51(5), 1992–2003. https://doi.org/10.1111/are.14551
Becerril-Cortés, D. Monroy-Dosta, M. del C. Coelho-Emerenciano, M. G. Castro-Mejía, G. Cienfuegos-Martínez, K. & de Lara-Andrade, R. 2017. Nutritional importance for aquaculture and ecological function of microorganisms that make up Biofloc, a review. Int. J. of Aquatic Science, 8(2), 69–77.
Bossier, P. & Ekasari, J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial biotechnology, 10(5), 1012-1016. https://doi.org/10.1111/1751-7915.12836
Braga, A. Magalhães, V. Hanson, T. Morris, T. C. & Samocha, T. M. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquaculture Reports, 3, 172–177. https://doi.org/10.1016/j.aqrep.2016.03.002
Burford, M. A. Thompson, P. J. McIntosh, R. P. Bauman, R. H. & Pearson, D. C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1-4), 525-537. https://doi.org/10.1016/S0044-8486(03)00541-6
Chan-Vivas, E. Edén, M. G. Maldonado, C. Escalante, K. Gaxiola, G. & Cuzon, G. 2019. Does Biofloc Improve the Energy Distribution and Final Muscle Quality of Shrimp, Litopenaeus vannamei (Boone, 1883)? Journal of the World Aquaculture Society, 50(2), 460–468. https://doi.org/10.1111/jwas.12522
Chen, X. Luo, G. Meng, H. & Tan, H. 2019. Effect of the particle size on the ammonia removal rate and the bacterial community composition of bioflocs. Aquacultural Engineering, 86, 102001. https://doi.org/10.1016/j.aquaeng.2019.102001
Cienfuegos M K, Monroy D, Hamdan P. A, Castro M. J y Becerril C. D. 2017. Probiotics used in Biofloc system for fish and crustacean culture: A review. International Journal of Fisheries and Aquatic Studies 2017; 5(5): 120-125
Collazos, L. F. & Arias, J. A. 2015. Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia, 19(1), 77. https://doi.org/10.22579/20112629.341
Contreras-Sillero, M. E. Pacheco-Vega, J. M. Valdez-González, F. J. De La Paz-Rodríguez, G. Cadena-Roa, M. A. Bautista-Covarrubias, J. C. & Godínez-Siordia, D. E. 2020. Polyculture of White shrimp (Penaeus vannamei) and sea cucumber (Holothuria inornata) in a biofloc system. Aquaculture Research, 51(11), 4410-4420. https://doi.org/10.1111/are.14782
Crab, R. Defoirdt, T. Bossier, P. & Verstraete, W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356–357, 351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046
Dauda, A. B. 2020. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 12(2), 1193–1210. https://doi.org/10.1111/raq.12379
Davidson, J. Helwig, N. & Summerfelt, S. T. 2008. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent. Aquacultural engineering, 39(1), 6-15. https://doi.org/10.1016/j.aquaeng.2008.04.002
Defoirdt, T. Boon, N. Bossier, P. Verstraete, W. 2004. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240 (1–4), 69–88. https://doi.org/10.1016/j.aquaculture.2004.06.031
De Oliveira Alves, G. F. Fernandes, A. F. A. de Alvarenga, É. R. Turra, E. M. de Sousa, A. B. & de Alencar Teixeira, E. 2017. Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479(August 2016), 564–570. https://doi.org/10.1016/j.aquaculture.2017.06.029
De Schryver, P. Crab, R. Defoirdt, T. Boon, N. & Verstraete, W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4), 125–137. https://doi.org/10.1016/j.aquaculture.2008.02.019
De Souza, D. M. Suita, S. M. Romano, L. A. Wasielesky Jr, W. & Ballester, E. L. C. 2014. Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquaculture Research, 45(2), 270-277. https://doi.org/10.1111/j.1365-2109.2012.03223.x
Dong, S. Li, Y. Jiang, F. Hu, Z. & Zheng, Y. (2021). Performance of Platymonas and microbial community analysis under different C/N ratio in biofloc technology aquaculture system. Journal of Water Process Engineering, 43, 102257. https://doi.org/10.1016/j.jwpe.2021.102257
Ebeling, J. M. Timmons, M. B. & Bisogni, J. J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
Ekasari, J. Angela, D. Waluyo, S. H. Bachtiar, T. Surawidjaja, E. H. Bossier, P. & De Schryver, P. 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426–427, 105–111. https://doi.org/10.1016/j.aquaculture.2014.01.023
Ekasari, J. Rivandi, D. R. Firdausi, A. P. Surawidjaja, E. H. Zairin, M. Bossier, P. & De Schryver, P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72–77. https://doi.org/10.1016/j.aquaculture.2015.02.019
Emerenciano, M. Gaxiola, G. & Cuzon, G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. IntechOpen. https://doi:10.5772/53902
Emerenciano, Ballester, E. L. C. Cavalli, R. O. & Wasielesky, W. 2011. Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891–901. https://doi.org/10.1007/s10499-010-9408-6
FAO. 2020. El Estado de la pesca y la acuicultura mundial, SOFIA 2020. In Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/ca9229es
Fimbres-Acedo, Y. E. Servín-Villegas, R. Garza-Torres, R. Endo, M. Fitzsimmons, K. M. Emerenciano, M. G. C. Magallón-Servín, P. López-Vela, M. y Magallón-Barajas, F. J. 2020. Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquaculture Research, 51(10), 4340–4360. https://doi.org/10.1111/are.14779
Gallardo-Collí, A. Pérez-Fuentes, M. Pérez-Rostro, C. I. & Hernández-Vergara, M. P. 2020. Compensatory growth of Nile tilapia Oreochromis niloticus, L. subjected to cyclic periods of feed restriction and feeding in a biofloc system. Aquaculture Research, 51(5), 1813–1823. https://doi.org/10.1111/are.14530
Green, B. W. Schrader, K. K. & Perschbacher, P. W. 2014. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquaculture Research, 45(9), 1442–1458. https://doi.org/10.1111/are.12096
Halim, M. A. 2019. Biofloc technology in aquaculture and its potentiality: A review. International Journal of Fisheries and Aquatic Studies, 7(5), 260–266. E-ISSN: 2347-5129. P-ISSN: 2394-0506
Hargreaves JA. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering 34: 344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009
Himaja, P.H.S.R.I. 2016. Review on Biofloc Meal As an Alternative Ingredient in Aquaculture Feeds. Journal of Aquaculture in the Tropics, 31(3–4), 199–220.
Holstein, T. E. 2019. Ecosystem Dynamics of a Microbial Biofloc Community Used to Culture Pacific White Shrimp ( Litopenaeus vannamei ). The University of Arizona. Copyright. http://hdl.handle.net/10150/620702
Hoseinifar, S. H. Ahmadi, A. Khalili, M. Raeisi, M. Van Doan, H. & Caipang, C. M. 2017. The study of antioxidant enzymes and immune-related genes expression in common carp (Cyprinus carpio ) fingerlings fed different prebiotics. Aquaculture Research, 48(11), 5447. https://doi.org/10.1111/are.13359
Iber, B. T. Benjamin, I. C. Nor, M. N. M. Abdullah, S. R. S. Shafie, M. S. B. Hidayah, M. ... & Kasan, N. A. (2025). Application of Biofloc technology in shrimp aquaculture: A review on current practices, challenges, and future perspectives. Journal of Agriculture and Food Research, 101675. https://doi.org/10.1016/j.jafr.2025.101675
Jatobá, A. Da Silva, B. C. Da Silva, J. S. Vieira, F. do N. Mouriño, J. L. P. Seiffert, W. Q. & Toledo, T. M. 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture, 432, 365–371. https://doi.org/10.1016/j.aquaculture.2014.05.005
Jiang, H. Zhang, Z. Lin, Z. Gong, X. Guo, H. & Wang, H. 2021. Modification of polyurethane sponge filler using medical stones and application in a moving bed biofilm reactor for ex situ remediation of polluted rivers. Journal of Water Process Engineering, 42, 102189. https://doi.org/10.1016/j.jwpe.2021.102189
Khanjani, M. H. Sharifinia, M. & Emerenciano, M. G. C. (2024). Biofloc technology (BFT) in aquaculture: What goes right, what goes wrong? A scientific‐based snapshot. Aquaculture Nutrition, 2024(1), 7496572. https://doi.org/10.1155/2024/7496572
Krummenauer, D. Peixoto, S. Cavalli, R. O. Poersch, L. H. & Wasielesky, W. 2011. Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in Southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726–733. https://doi.org/10.1111/j.1749-7345.2011.00507.x
Lalloo, R. Ramchuran, S. Ramduth, D. Görgens, J. & Gardiner, N. 2007. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. Journal of Applied Microbiology, 103(5), 1471–1479. https://doi.org/10.1111/j.1365-2672.2007.03360.x
Li, J. Liu, G. Li, C. Deng, Y. Tadda, M. A. Lan, L. ... & Liu, D. 2018. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 495, 919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078
Liang, D. Hu, Y. Liang, D. Chenga, J. & Chena, Y. 2021. Bioaugmentation of Moving Bed Biofilm Reactor (MBBR) with Achromobacter JL9 for enhanced sulfamethoxazole (SMX) degradation in aquaculture wastewater. Ecotoxicology and Environmental Safety, 207, 111258. https://doi.org/10.1016/j.ecoenv.2020.111258
Liu, H. Li, H. Wei, H. Zhu, X. Han, D. Jin, J. ... & Xie, S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506, 256-269. https://doi.org/10.1016/j.aquaculture.2019.03.031
Liu, W. Du, X. Tan, H. Xie, J. Luo, G. & Sun, D. 2021. Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies. Science of the Total Environment, 754, 141918. https://doi.org/10.1016/j.scitotenv.2020.141918
Long, L. Yang, J. Li, Y. Guan, C. & Wu, F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448, 135–141. https://doi.org/10.1016/j.aquaculture.2015.05.017
Luo, G. Gao, Q. Wang, C. Liu, W. Sun, D. Li, L. & Tan, H. 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423, 1–7. https://doi.org/10.1016/j.aquaculture.2013.11.023
Luo, G. Zhang, N. Tan, H. Hou, Z. & Liu, W. (2017). Efficiency of producing bioflocs with aquaculture waste by using poly-β-hydroxybutyric acid as a carbon source in suspended growth bioreactors. Aquacultural Engineering, 76, 34-40. https://doi.org/10.1016/j.aquaeng.2017.01.001
Mandario, M. A. E. 2020. Survival, growth and biomass of mud polychaete Marphysa iloiloensis (Annelida: Eunicidae) under different culture techniques. Aquaculture Research, 51(7), 3037–3049. https://doi.org/10.1111/are.14649
Manzoor, P. S. Rawat, K. D. Tiwari, V. K. Poojary, N. & Asanaru Majeedkutty, B. R. 2020. Dietary lipid influences gonadal maturation, digestive enzymes and serum biochemical indices of Cyprinus carpio reared in biofloc system. Aquaculture Research, 51(8), 3244–3254. https://doi.org/10.1111/are.14659
Martínez-Córdova, L. R. Emerenciano, M. Miranda-Baeza, A. & Martínez-Porchas, M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An update review. Reviews in Aquaculture, 7(2), 131–148. https://doi.org/10.1111/raq.12058
Martínez-Montaño, Emmanuel, Rodríguez-Montes de Oca, Gustavo A. Román-Reyes, José C. Pacheco-Marges, Rosario, Llanos, Alejandro, & Bañuelos-Vargas, Isaura. (2020). Diatomaceous earth application to improve shrimp aquaculture: growth performance and proximate composition of Penaeus vannamei juveniles reared in biofloc at two salinities. Latin american journal of aquatic research, 48(2), 197-206. https://dx.doi.org/10.3856/vol48-issue2-fulltext-2386
Medina, J. 2018. Fundamentos de innovación tecnológica en acuicultura intensiva - 2018 - (D. Mojica, H. Landínes, M. y Rivas (ed.)). Oficina de Generación del Conocimiento y la Información, Autoridad Nacional de Acuicultura y Pesca AUNAP ©, 265 p.
Minaz, M. Sevgili, H. & Aydın, İ. (2024). Biofloc technology in aquaculture: advantages and disadvantages from social and applicability perspectives–a review. Annals of Animal Science, 24(2), 307-319. https://intapi.sciendo.com/pdf/10.2478/aoas-2023-0043
Mirzakhani, N. Ebrahimi, E. Jalali, S. A. H. & Ekasari, J. 2019. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512(November 2018), 734235. https://doi.org/10.1016/j.aquaculture.2019.734235
Moss, S. M. Moss, D. R. Arce, S. M. Lightner, D. V. & Lotz, J. M. 2012. The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. Journal of Invertebrate Pathology, 110(2), 247– 250. https://doi.org/10.1016/j.jip.2012.01.013
Ødegaard H, Gisvold B, Strickland J. 2000. The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology 41: 383– 391. https://doi.org/10.2166/wst.2000.0470
Ogello, E. O. Musa, S. M. Aura, C. M. & Abwao, J. O. 2014. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology : A review. Int. J. Aquat. Sci. 5, 21–39
Park, J. Roy, L. A. Renukdas, N. & Luna, T. 2017. Evaluation of a Biofloc System for Intensive Culture of Fathead Minnows, Pimephales promelas. Journal of the World Aquaculture Society, 48(4), 592–601. https://doi.org/10.1111/jwas.12387
Pérez-Fuentes, J. A. Pérez-Rostro, C. I. & Hernández-Vergara, M. P. 2013. Pond-reared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture, 400–401, 105–110. https://doi.org/10.1016/j.aquaculture.2013.02.028
Poli, M. A. Schveitzer, R. & de Oliveira Nuñer, A. P. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquacultural Engineering, 66, 17–21. https://doi.org/10.1016/j.aquaeng.2015.01.004
Poli, M. A. Legarda, E. C. de Lorenzo, M. A. Pinheiro, I. Martins, M. A. Seiffert, W. Q. & do Nascimento Vieira, F. 2019. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture, 511, 734274. https://doi.org/10.1016/j.aquaculture.2019.734274
Rajkumar, M. Pandey, P. K. Aravind, R. Vennila, A. Bharti, V. & Purushothaman, C. S. 2015. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47(11), 3432–3444. https://doi.org/10.1111/are.12792
Ray, A. J. Dillon, K. S. & Lotz, J. M. 2011. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001
Ridha, M. T. Hossain, M. A. Azad, I. S. & Saburova, M. 2020. Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquaculture Research, 51(10), 4225–4237. https://doi.org/10.1111/are.14764
Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006
Schveitzer, R. Fonseca, G. Orteney, N. Menezes, F. C. T. Thompson, F. L. Thompson, C. C. & Gregoracci, G. B. 2020. The role of sedimentation in the structuring of microbial communities in biofloc-dominated aquaculture tanks. Aquaculture, 514, 734493. https://doi.org/10.1016/j.aquaculture.2019.734493
Shao, J. Liu, M. Wang, B. Jiang, K. Wang, M. & Wang, L. 2017. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway. Aquaculture, 479, 516-521. https://doi.org/10.1016/j.aquaculture.2017.06.034
Sherr B, Sherr E, Marine microbes: an overview. En: Kirchman D. (Ed) Microbial Ecology of the Oceans. Wiley-Liss, New York; 2000:13-46.
Wang, R. Xu, Q. Chen, C. Li, X. Zhang, C. & Zhang, D. 2021. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials. Bioresource Technology, 331, 125045. https://doi.org/10.1016/j.biortech.2021.125045
Wang, Y. Chen, Z. Chang, Z. Zhang, S. Meng, G. & Li, J. (2024). Comparison of economic and ecological benefits between factory water exchange model and biofloc model based on meta analysis. Aquaculture, 741907. https://doi.org/10.1016/j.aquaculture.2024.741907
Wasielesky, W. Atwood, H. Stokes, A. & Browdy, C. L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1–4), 396–403. https://doi.org/10.1016/j.aquaculture.2006.04.030
Xie, W. Pan, L. Sun, X. & Huang, J. 2012. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero -water exchange culture tanks. Aquaculture research, 1-10. https://doi.org/10.1111/j.1365-2109.2012.03115.x
Xu, W. J. & Pan, L. Q. 2014. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture, 426–427, 181–188. https://doi.org/10.1016/j.aquaculture.2014.02.003
Xu, W. J. Pan, L. Q. Sun, X. H. & Huang, J. 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquaculture Research, 44(7), 1093–1102. https://doi.org/10.1111/j.1365-2109.2012.03115.x
Xu, W. J. Morris, T. C. & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169-175. https://doi.org/10.1016/j.aquaculture.2015.11.021
Yu Z, Li L, Li M, y Wu L-F. 2020. Dietary supplementation of microbial floc heightens growth and improves digestive, immune, antioxidant enzymes activity and ammonia resistance in Opsariichthys kaopingensis. Aquaculture Research. 51(10), 4054–4064. doi.org/10.1111/are.14748
Yu, Y. B. Choi, J. H. Lee, J. H. Jo, A. H. Lee, K. M. & Kim, J. H. 2023. Biofloc technology in fish aquaculture: A review. Antioxidants, 12(2), 398. https://doi.org/10.3390/antiox12020398
Zhang, A., Shen, H., Zhang, X., Wang, T., Mei, F., Jeyakumar, D. T., ... & Xu, Z. (2025). The role of microalgae in Penaeus vannamei aquaculture: Exploring the importance of biofloc technology. Aquaculture, 742397. https://doi.org/10.1016/j.aquaculture.2025.742397