Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión

Fundamentals of bioflocs technology (BFT). An alternative for fish farming in Colombia. A review

Contenido principal del artículo

Luis F. Collazos-Lasso
José A. Arias-Castellanos

Resumen

Los sistemas convencionales de producción piscícola en Colombia empiezan a descender principalmente por la necesidad de grandes cantidades de agua cada vez más escasa, aumento de la contaminación de los afluentes de descargue, aumento del costo de los alimentos con gran desperdicio de los mismos y otros factores ambientales adversos como sequías en grandes áreas del territorio e irregulares volúmenes de producción por unidad de área o volumen. Por lo anterior la búsqueda de nuevas posibilidades de producción piscícola que sean amigables con el ambiente, incluyentes socialmente y rentables son cada vez más apremiantes. Una de las alternativas que empiezan a cautivar el interés de los piscicultores es el sistema de producción súper-intensiva con tecnología biofloc (BFT), la cual se sustenta en aprovechar la acumulación de residuos de los alimentos, materia orgánica y compuestos inorgánicos tóxicos a través de microorganismos presentes en los medios acuáticos, dando condiciones de dominancia a comunidades autótrofas y heterótrofas, resolviendo sustancialmente los problemas de saturación de nutrientes a partir de su reciclaje, en este sentido el objetivo de la presente revisión es presentar los fundamentos básicos de la BFT, como una alternativa de producción piscícola.

Palabras clave: Microorganismos; tecnología biofloc; piscicultura; nutrientes.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Luis F. Collazos-Lasso, nstituto de Acuicultura de los Llanos - IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos

Ingeniero en Producción Acuícola, MSc, Estudiante de Doctorado en Ciencias Agrarias; Instituto de Acuicultura de los Llanos - IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta - Colombia. Email: [email protected]

José A. Arias-Castellanos, Fundación Orinoquia, Puerto Carreño, Vichada - Colombia.

Biólogo, MSc, PhD. Fundación Orinoquia, Puerto Carreño, Vichada - Colombia.

Referencias (VER)

Abad D, Rincón D, Poleo G. Índices de rendimiento corporal en morocoto Piaractus brachypomus cultivado en sistemas Biofloc. Zootecnia Trop. 2014; 32(2): 119-130.

Abreu PC, Ballester ELC, Odebrecht C, Wasielesky WJr, Cavalli RO, Granéli W, Anésio AM. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J Expl Mar Biol Ecol. 2007; 347: 88-96.

Atencio GV, Pertuz BV, Bru CS, Ayazo GJ. 2013. Curso teórico - práctico tecnología de cultivo biofloc: fundamentos y manejo. Centro de Investigación Piscícola de la Universidad de Córdoba - CINPIC. Montería - Colombia.

AUNAP - Autoridad Nacional de Acuicultura y Pesca. 2013. Diagnóstico del estado de la acuicultura en Colombia. Bogotá, Colombia.

Avnimelech Y. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture. 1999; 176: 227-235.

Avnimelech Y. Bio-filters: The need for an new comprehensive approach. Aquacult Eng. 2006; 34: 172-178.

Avnimelech Y. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 2007; 264: 140-147.

Avnimelech Y. 2009. Biofloc Technology - A practical Guide Book. The World Aquaculture Society. 272 pp.

Avnimelech Y. 2011. Tilapia Production Using Biofloc Technology Saving Water, Waste Recycling Improves Economics. Global aquaculture advocate May/June: 66-68. USA.

Avnimelech Y. 2012a. Nitrogen Isotope: Tool To Evaluate Protein Uptake In Biofloc Systems. Global Aquaculture Alliance. Marzo/Abril 2012. 74-75 pp.

Avnimelech Y. 2012b. Biofloc Technology - A Pratical Guide Book. The World Aquaculture Society, Baton Rouge, Louisiana, United States. 2. Ed.

Avnimelech Y, Verdegem MCJ, Kurup M, Keshavanath P. Sustainable land-based aquaculture: Rational utilization of water, land and feed resources. Med Aquacult J. 2008; 1: 45-55.

Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983; 10: 257-263.

Azim ME, Little DC. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. 2008; 283: 29-35.

Azim ME, Little DC, Bron J. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and implications for fish culture. Bioresour Technol. 2008; 99(9): 3590-3599.

Boyd C, Pond water aeration systems. Aquac Eng. 1998; 18: 9-40.

Boyd CE, Clay JW. 2002. Evaluation of Belize Aquaculture, Ltd: A Superintensive Shrimp Aquaculture System. Report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment. 17 pp.

Browdy C, Bratvold D, Stokes A, Mcintosh R. 2001. Perspectives on the application of closed shrimp culture systems. In: C.L. Browdy and D.E. Jory, (Eds.) The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture The World Aquaculture Society, p. 20-34.

Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture. 2003; 219: 393-411.

Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture. 2004; 232: 525-537.

Chamberlain G, Avnimelech Y, McIntosh R, Velasco M. Advantages of aerated microbial reuse systems with balanced C: N. III: practical applications. Global Aqua Advocate. 2001; 4: 50-54.

Collazos LLF y Arias CJA. Influencia de la temperatura en la sobrevivencia de larvas de Rhamdia sebae c.f. (Siluriformes heptapteridae). Orinoquia. 2007; 11(1): 56-62.

Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007; 270: 1-14.

Crab R, Chielens B, Wille M, Bossier P, Verstraete W. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult Res. 2010; 41: 559-567.

Crab R, Defoirdt T, Bossier P y Verstraete W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture. 2012; (356-357): 351-356.

Craig LB, Andrew JR, John WL, Avnimelech Y. Biofloc-based Aquaculture Systems. Aquaculture Production Systems, First Edition. Edited by James Tidwell. 2012; 12: 278-306.

Craig S, Helfrich LA. 2002. Understanding Fish Nutrition, Feeds and Feeding (Publication 420-256). Virginia Cooperative Extension, Yorktown (Virginia). 4 pp.

David RCA. 2009. Cuantificación de los niveles de excreción de nitrógeno amoniacal en función del nivel de proteína en la dieta y la masa corporal, en cachama blanca (Piaractus brachypomus) (Cuvier 1818) bajo condiciones de laboratorio. Tesis de maestría en Acuicultura. Universidad de los Llanos, Villavicencio - Colombia.

De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture. 2008; 277: 125-137.

Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture. 2006; 257: 346-358.

Ekasari J, Deasy A, Waluyo SH, Bachtiar T, Surawidjaja EH, Bossier P, De Schryver P. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture. 2014; (426-427): 105-111.

Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin Jr M, Bossier, De Schryver P. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 2015; 441: 72-77.

Emerenciano M, Cuzon G, Goguenheim J, Gaxiola G, Aquacop. Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquac Res. 2012; 44(1): 75-85.

Emerenciano M, Gaxiola G y Cuzon G. 2013. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. INTECH open science_open minds. Cap 12: 301-327. http://dx.doi.org/10.5772/53902.

Emerson K, Russo RC, Lund RE, Thurston RV. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Can. 1975; 32: 2379-2383.

FAO - Organización de las Naciones Unidas para la alimentación y la agricultura. 2012. El estado mundial de la pesca y la acuicultura. Roma.

FAO - Organización de las Naciones Unidas para la alimentación y la agricultura. 2014. El estado mundial de la pesca y la acuicultura. Roma.

Gelineau A, Medale F. y Boujard T. Effect of feeding time on post prandial nitrogen excretion and energy expenditure in rainbow trout. J Fish Biol. 1998; 52: 655-664.

Green BW. Performance of a temperate-zone channel Cat fish biofloc technology production system during winter. Aquacultural Engineering. 2015; 64: 60-67.

Hargreaves JA. Nitrogen biogeochemistry of aquaculture ponds. Review. Aquaculture. 1998. 166 181-212.

Hargreaves JA. Photosynthetic suspended-growth systems in aquaculture. Aquacult Eng. 2006; 34: 344-363.

Hargreaves JA. Bioflóc Production Systems for Aquaculture. En: SRAC. Abril, 2013: 4503: 8-10.

Hari B, Kurup BM, Varghese JT, Schrama JW, Verdegem MCJ. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture. 2004; 241: 179-194.

Hernández J, Vargas AF. A microplate technique to quantify nutrients (NO2=, NO3=, NH4+ and PO43-) in seawater. Aquac Res. 2003; 34: 1201-1204.

Jorand F, Zartarian F, Thomas F, Block J, Bottero J, Villemin G, Urbain V, Manem J. Chemical and structural (2d) linkage between bacteria within activated-sludge flocs. Water Res. 1995; 29(7): 1639-1647.

Kubitza F. Criação de tilapias em sistema com bioflocos sem renovação de agua. Panorama da Aqüicultura. 2011; 21(125): 14-23.

Kuhn D, Lawrence A. 2012. Biofloc Technology Options For Aquaculture In-Situ, Ex-Situ Systems Improve Water Quality, Provide Nutrition. Copyright © 2012, Global Aquaculture Alliance.

Kuhn D, Boardman G, Lawrence A, Marsh L, Flick G. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture. 2009; 296: 51-57.

Martínez CLR, Martínez PM, López EJA, Campaña TCA, Miranda BA, Ballester E, Porchas CMA, Martínez-Córdova L. 2010. Alimento Natural en Acuacultura: una revisión actualizada. En: Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Nieto-López MG, Villarreal-Cavazos DA, Gamboa-Delgado J. (Eds). Avances en nutrición Acuícola X - Memorias del X Simposio Internacional de Alimento natural en acuacultura: Nutrición Acuícola, 8-10 de Noviembre, San Nicolás de los Garza, N. L., México. ISBN 978-607-433-546-0. Univ Autó Nvo León, Monterrey, México, pp. 668-699.

Mcintosh R, 2001. Changing Paradigms in Shrimp Farming. V: Establishment of heterotrofic bacterial commuinities. Global Aquaculture Alliance. v. February.

Monroy DMC, De Lara AR, Castro MJ, Castro MG y Emerenciano CM. Composición y abundancia de comunidades microbianas. Rev Biol Mar Oceanogr. 2013; 48(3): 511-520.

Moss S. 2002. Dietary importance of microbes and detritus in penaeid shrimp aquaculture, pp. 1-18. In: Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems, CS Lee and P. O'Bryen (editors). The World Aquaculture Society, Baton Rouge, Louisisana, USA, 2002.

Okabe S, Watanabe Y. Structure and function of growth culture evaluation of Daphnia magna feed with Saccharomyces cereviseae enrichment with oat soy nitrifying biofilms as determined by in situ hybridization and the presence of microelectrodes. Water Sci Technol. 2000; 42: 21-32.

Pasco MJ. 2005. Aeraçãoem cultivos superintensivos de tilapias Oreochromis niloticus, em bioflocos e com troca mínima de água. Tese Doutorado em aquicultura. Universidade Federal De Santa Catarina, Centro De Ciências Agrárias Departamento De Aquicultura, Florianapolis. Brasil.

Piedrahita RH. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture. 2003; 226: 35-44.

Poleo G, Aranbarrio JV, Mendoza L, Romero O. Cultivo de cachama blanca en altas densidades y en dos sistemas cerrados. Pesq Agropec Bras. Brasília. 2011; 46(4): 429-437.

Poli MA, Schveitzer R, Oliveira N. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquacult Eng. 2015; 66: 17-21.

Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture. 2010; 310: 130-138.

Ray JA, Lotz JM. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquacult Eng. 2014; 63: 54-61.

Sagratzki CBA, Pereira-Filho M, Bordinhon A, Fonseca FA, Ituassú D, Roubach R. y Ono EA. Tolerância de juvenis de pirarucuao aumento da concentração de amôniaem ambiente confinado. Pesq Agrop Bras. 2004; 39: 513-516.

Samocha TM, Patnaik S, Speed M, Ali AM, Burger JM, Almeida RV, Ayub Z, Harisanto M, Horowitz A, Brock DL. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacult Eng. 2007; 36: 184-191.

Sastre OF, Hernández G, Cruz CP. Influencia del peso corporal y de la temperatura del agua sobre el consumo de oxígeno de la Cachama Blanca (Piaractus brachypomus). Rev Col Cienc Pec. 2004; 17: 11-16.

Schneider O, Sereti V, Eding EP y Verreth JAJ. Molasses as C source for heterotrophic bacteria production on solid fish waste. Aquaculture. 2006; 261: 1239-1248.

Schveitzer R, Arantes R, Costódio PFS, do Espírito Santo CM, Arana LV, Seiffert WQ, Andreatta ER, Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacult Eng. 2013; 56: 59-70.

Timmons MB, Ebeling JM, Wheaton FW, Sommerfelt ST, Vinci BJ. 2002. Microbial biofloc and protein levels in green tiger shrimp. Recirculating aquaculture systems, 748 pp. Caruga Aqua Ventures, New York.

Timmons MB, Ebeling JM, Wheaton FW, Summerrfelt ST, Vinci BJ. 2002a. Recirculating aquaculture systems. 2 ed. New York: Cayuga Aqua Venture, 769 pp.

Timmons MB y Ebeling JM. 2010. Recirculating Aquaculture. NRAC Publication No. 401. Ithaca, NY, 948 pp.

Tzachi M, Samocha BA, Correia ES, Morris TC, Wilkenfeld JS. 2012. Growth performance of Litopenaeus vannamei in super-intensive mixotrophic raceway culture with zero discharge using Tareation® technology for aeration and extended CO2 degassing. Texas AgriLife Research Mariculture Lab. at Flour Bluff, Corpus Christi, Texas. 45 p.

Valbuena M, Velasco SY, Cruz CP. Efecto del peso corporal sobre el consumo de oxígeno en yamú (Brycon amazonicus Spix & Agassiz 1829): reporte preliminar. Rev Col Cienc Pec. 2006; 19(2): 175-179.

Valbuena RD, Cruz CP. Efecto del peso corporal y temperatura del agua sobre el consumo de oxígeno de tilapia roja (Oreochromis sp). Orinoquia. 2006; 10(1): 57-63.

Vinatea L. 2004. Principios químicos de qualidade da agua em aqüicultura. 2. ed: Editora da UFSC, Florianópolis 345 pp.

Wasielesky WJr, Atwood H, Stokes A, Browdy CL. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture. 2006; 258: 396-403.

WHO - World Health Organization technical report. 2003. series Nº 916.150 pp.

Wilén BM, Onuki M, Hermansson M, Lumley D, Mino T. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Research, 2008; 42(8-9): 2300-2308.