Orinoquia
Número actual Logotipo de Atom
Logotipo de RSS2
Logotipo de RSS1

Orinoquia, Volumen 24, Número 1, p. 23-31, 2020. ISSN electrónico 2011-2629. ISSN impreso 0121-3709.

Analysis of Nostoc muscorum biomass production in a hydroponic system

Análisis de la producción de biomasa de Nostoc muscorum en sistema hidropónico

Análise da produção de biomassa de Nostoc muscorum num sistema hidropônico

Martha L. Ortiz-Moreno, Laura V. Solarte-Murillo, Karen X. Sandoval-Parra

Texto completo:


Resumen (en)

Nostoc is a genus of filamentous cyanobacteria with biotechnological applications in human nutrition, biomedicine, biofertilization and commercial production of biofuels. However, the low growth rate in liquid medium due to its periphytic nature and its tendency to form biofilms, limits its large-scale production. Therefore, the aim of this study was to evaluate the biomass production of Nostoc muscorum in a modified hydroponic system. Cultures of N. muscorum were made by triplicate, in a hydroponic system under semicontrolled conditions of temperature (29 ± 13 °C), light intensity (32 ± 54 μmol/m2/s) and photoperiod (12 hours), for a total of 23 days inside a greenhouse. Temperature, pH, conductivity and dry biomass production were monitored on alternating days. The results showed that the maximum dry biomass production was 0.2276 ± 0.0114 g/m2/day, and the average productivity was 0.4149 ± 0.0207 g/m2/day. The maximum biomass production of N. muscorum was achieved on day thirteen with 0.3185 ± 0.0159 g/m2/day. The correlation statistical analysis of environmental variables did not show significant differences; thus, temperature, pH and electrical conductivity did not affect the biomass production of N. muscorum. Consequently, the algal growth was influenced by the species physiology only. The support used in the hydroponic system allowed the adhesion and development of the algae mucilaginous layer without requiring drying periods as in conventional crops. The hydroponic system provided a continuous flow of nutrients that could prevent the attack of opportunistic bacteria and fungi, generating a high growth rate of N. muscorum. The hydroponic system represents a viable alternative for the production of N. muscorum biomass under greenhouse conditions at large scale.

Palabras clave (en)

algal growth; biomass; cyanobacteria; hydroponics

Resumen (es)

Nostoc es un género de cianobacterias filamentosas con aplicaciones biotecnológicas en nutrición humana, biomedicina, biofertilización y producción comercial de biocombustibles. Sin embargo, su baja tasa de crecimiento en medio líquido por su naturaleza perifítica y su tendencia a formar biofilms, limita su producción a gran escala. Por lo tanto, el objetivo de este estudio fue analizar la producción de biomasa de Nostoc muscorum en un sistema hidropónico modificado. Para ello, se realizaron cultivos de N. muscorum por triplicado, en un sistema hidropónico bajo condiciones semicontroladas de temperatura (29 ± 13°C), intensidad lumínica (32 ± 54 μmol/m2/s) y fotoperiodo (12 horas), durante 23 días en un invernadero. La temperatura, el pH, la conductividad eléctrica y la producción de biomasa seca, fueron monitoreados en días alternados. Los resultados arrojaron que la producción máxima de biomasa seca fue de 0.2276 ± 0.0114 g/m2/día, y la productividad promedio fue de 0.4149 ± 0.0207 g/m2/día. A su vez, la producción máxima de biomasa de N. muscorum se obtuvo el día trece con 0.3185 ± 0.0159 g/m2/día. El análisis estadístico de correlación de variables ambientales no arrojó diferencias significativas, por lo que la temperatura, el pH y la conductividad eléctrica no afectaron la producción de biomasa de N. muscorum. Consecuentemente, el crecimiento algal fue influenciado por la fisiología de la especie. El soporte empleado en el sistema hidropónico permitió la adherencia y el desarrollo de la capa mucilaginosa de la cianobacteria sin requerir períodos de desecación como en los cultivos convencionales. El sistema hidropónico proporcionó un flujo continuo de nutrientes que podría prevenir el ataque de bacterias y hongos oportunistas, generando una alta tasa de crecimiento. De este modo, este sistema hidropónico representa una alternativa viable para la producción de biomasa de N. muscorum en condiciones de invernadero a gran escala.

Palabras clave (es)

biomasa; cianobacteria; crecimiento algal; hidroponía

Resumen (pt)

Nostoc é um gênero de cianobactérias filamentosas com aplicações biotecnológicas em nutrição humana, biomedicina, biofertilização e produção comercial de biocombustíveis. Entretanto, sua baixa taxa de crescimento em meio líquido, devido à sua natureza perifítica e sua tendência a formar biofilmes, limita sua produção em larga escala. Portanto, o objetivo deste estudo foi analisar a produção de biomassa de Nostoc muscorum num sistema hidropônico modificado. Para isso, foram realizadas culturas de N. muscorum em triplicata num sistema hidropônico sob temperatura (29 ± 13°C) e intensidade da luz (32 ± 54 μmol/m2/s) semicontroladas com fotoperíodo de 12 horas durante 23 dias numa estufa. A temperatura, o pH, a condutividade elétrica e a biomassa seca foram monitorados em dias alternados. Os resultados mostraram que a produção máxima de biomassa seca foi de 0,2276 ± 0,0114 g/m2/dia e a produtividade média foi de 0,4149 ± 0,0207 g/m2/dia. No entanto, a produção máxima de biomassa de N. muscorum foi obtida no dia treze com 0,3185 ± 0,0159 g/m2/dia. A análise estatística da correlação de variáveis ambientais não mostrou nenhuma diferença significativa, de modo que a temperatura, o pH e a condutividade eléctrica não afetaram a produção de biomassa de N. muscorum e o crescimento foi influenciado pela fisiologia da espécie. O suporte utilizado permitiu a adesão e desenvolvimento da camada mucilaginosa das algas sem a necessidade de períodos de secagem como nas culturas convencionais. O sistema hidropônico proporcionou um fluxo contínuo de nutrientes que impede o ataque de bactérias e fungos oportunistas, gerando uma alta taxa de crescimento. Portanto, este sistema hidropônico representa uma alternativa viável para a produção de biomassa de N. muscorum em larga escala sob condições de estufa.

Palabras clave (pt)

biomassa; cianobactérias; crescimento de algas; hidroponia

Referencias

Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci, 2012;19: 257–275.

Alatorre-Cobos F, Calderón-Vázquez C, Ibarra-Laclette E, Yong-Villalobos L, Pérez-Torres CA, Oropeza-Aburto A, Méndez-Bravo A, et al. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions. BMC Plant Biol, 2014;14(1):69. DOI: 10.1186/1471-2229-14-69.

Ansari S, Fatma T. Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS One, 2016;11(6).e0158168 DOI: 10.1371/journal.pone.0158168.

Babu S, Prasanna R, Bidyarani N, Singh R. Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J Appl Phycol, 2015;1:327-338.

Barone V, Puglisi I, Fragalà F, Lo Piero AR, Giuffrida F, Baglieri A. Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J Appl Phycol, 2019;31:465-470. DOI: 10.1007/s10811-018-1518-y.

Bawiec A, Garbowski T, Pawęska K, Pulikowski K. Analysis of the algae growth dynamics in the hydroponic system with LEDs nighttime lighting using the laser granulometry method. Water Air Soil Pollut, 2019;228(9):366.

Benítez REH, Vidal DRA, Guerrero JV. Efecto de la inoculación de cianobacterias en cultivos de interés comercial en zonas semiáridas de La Guajira-Colombia. Rev Colomb Investig Agroin, 2018;5(1):20-31. DOI: 10.23850/issn.2422-0582.

Bharti A, Prasanna R, Kumar G, Kumar A, Nain L. Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system. J Appl Phycol, 2019;31:3625-3635. DOI: 10.1007/s10811-019-01830-9.

Bidyarani N, Prasanna R, Chawla G, Babu S, Singh RM. Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J Basic Microbiol, 2015;55:407-419.

Cui L, Xu H, Zhu Z, Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biol Open, 2017;6(9):1329-1335. DOI: 10.1242/bio.026955.

Dhar DW, Prasanna R, Pabbi S, Vishwakarma R. 2015. Significance of cyanobacteria as inoculants in agriculture. In: Das D (Editor). Algal biorefinery: An integrated approach. Springer, Cham. p. 339-374.

Diao Y, Yang Z. Evaluation of morphological variation and biomass growth of Nostoc commune under laboratory conditions. J Environ Biol, 2014;35(3):485-489.

Ferroni L, Klisch M, Pancaldi S, Häder DP. Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme. Mar Drugs, 2010;8(1): 106-121. DOI: 10.3390/md8010106.

Flores E, López‐Lozano A, Herrero A. 2015. Nitrogen fixation in the oxygenic phototrophic prokaryotes (cyanobacteria): the fight against oxygen. In: de Bruijn FJ (Editor). Biological Nitrogen Fixation. John Wiley & Sons, Inc. p. 879-890. DOI: 10.1002/9781119053095.ch86.

Guo M, Ding GB, Yang P, Zhang L, Wu H, Li H, Li Z. Migration suppression of small cell lung cancer by polysaccharides from Nostoc commune Vaucher. J Agric Food Chem, 2016;64(32):6277-6285. DOI: 10.1021/acs.jafc.6b01906.

Haase SM, Huchzermeyer B, Rath T. PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol, 2012;24(2):157-162. DOI: 10.1007/s10811-011-9663-6.

Hultberg M, Carlsson AS, Gustafsson S. Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresour Technol, 2013;136:401-406.

Kim KR, Na JU, Lee SH, Oh DK. Selective production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic acid from α-linolenic acid in perilla seed oil hydrolyzate by a lipoxygenase from Nostoc sp. SAG 25.82. PLoS One, 2015;10(9):e0137785. DOI: 10.1371/journal.pone.0137785.

Lenzi A, Baldi A, Tesi R. Growing spinach in a floating system with different volumes of aerated or non aerated nutrient solution. Adv Hortic Sci, 2011;25(1):21-25. Retrieved March 26, 2020, from www.jstor.org/stable/42882804.

Liao HF, Wu TJ, Tai JL, Chi MC, Lin LL. Immunomodulatory potential of the polysaccharide-rich extract from edible cyanobacterium Nostoc commune. Med Sci (Basel), 2015;3(4):112-123. DOI: 10.3390/medsci3040112.

Lotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. Cell Mol Biol, 2017;63(9):96-105. DOI: 10.14715/cmb/2017.63.9.17.

Nowruzi B, Haghighat S, Fahimi H, Mohammadi E. Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research (IJPHR), 2018;9(1):5-12. DOI: 10.1111/jphs.12202.

Prasanna R, Saxena G, Singh B, Ranjan K, Buddhadeo R, Velmourougane K, et al. Mode of application influences the biofertilizing efficacy of cyanobacterial biofilm formulations in chrysanthemum varieties under protected cultivation. Open Agric, 2018;3:478-489.

Raja R, Hemaiswarya S, Ganesan V, Carvalho IS. Recent developments in therapeutic applications of Cyanobacteria. Crit Rev Microbiol, 2016;42(3):394-405. DOI:10.3109/1040841X.2014.957640.

Ranjan K, Priya H, Ramakrishnan B, Prasanna R, Venkatachalam S, Thapa S, Tiwari R, Nain L, Singh R, Shivay YS. Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl Soil Ecol, 2016;108:195-203. DOI: 10.1016/j.apsoil.2016.08.010.

Rosales-Loaiza N, Vera P, Aiello-Mazzarri C, Morales E. Comparative growth and biochemical composition of four strains of Nostoc and Anabaena (Cyanobacteria, Nostocales) in relation to sodium nitrate. Acta Biolo Colomb, 2016;21(2):347-354. DOI: 10.15446/abc.v21n2.48883.

Rossi F, De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life, 2015;5(2):1218-1238. DOI: 10.3390/life5021218.

Rusydi R, Yakupitiyage A, Gallardo WG, Dabbadie L, Anal AK. Potential of Nostoc muscorum cultured in BG-11 medium as biodiesel feedstock source: evaluation of nutrient requirement for culture and its daily lipid content. KnE Life Sci, 2015;1:103-113. DOI: 10.18502/kls.v1i0.93.

Shah V, Garg N, Madamwar D. Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production. Folia Microbiol, 2003;48:65. DOI: 10.1007/BF02931278

Singh SP, Pathak J, Sinha RP. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renew Sust Energ Rev, 2017;69:578-595. DOI: 10.1016/j.rser.2016.11.110.

Singh VP, Srivastava PK, Prasad SM. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotox Environ Safe, 2011;74(7):1981-1993. DOI: 10.1016/j.ecoenv.2011.07.006.

Vaara T, Vaara M, Niemelä S. Two improved methods for obtaining axenic cultures of cyanobacteria. Appl Environ Microbiol, 1979;38 (5): 1011-1014.

Verseux C, Baqué M, Lehto K, de Vera JP, Rothschild LJ, Billi D. Sustainable life support on Mars–the potential roles of cyanobacteria. Int J Astrobiol, 2016;15(1):65-92. DOI: 10.1017/ S147355041500021X.

Vorndran E, Lindberg P. In situ-immobilization of two model cyanobacterial strains in ceramic structures: A new biohybrid material for photobioreactor applications. J Biotechnol, 2016;223:1-5. DOI: 10.1016/j.jbiotec.2016.02.024.

Wehr JD, Sheath RG, Kociolek JP. 2015. Freshwater algae of North America: ecology and classification. 2nd ed. Elsevier, Academic Press, USA. p. 1050.

Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J, 2016;11:2557-2568. DOI: 10.1038/ismej.2016.45.

Ye J, Song Z, Wang L, Zhu J. Metagenomic analysis of microbiota structure evolution in phytoremediation of a swine lagoon wastewater. Bioresour Technol, 2016;219: 439–444.

Yu H, Jia S, Dai Y. Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Psychol, 2009;21(1):127. DOI: 10.1007/s10811-008-9341-5.

Zhang J, Wang X, Zhou Q. Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass Bioenergy, 2017;97:132-138.


Métricas de artículo

Vistas de resumen.
a description of the source 210




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.

2018 ® Universidad de los Llanos Nit: 892.000.757-3

Barcelona: Km. 12 Via Puerto López - PBX 6616800

San Antonio: Km. 12 Via Puerto López - PBX 6616900

Emporio: Km. 12 Via Puerto López - PBX 6616700

Fax: 6616800 ext 204

Horario de atención: Lunes a viernes 7:30am a 11:45am y 2:00pm a 5:30pm

Linea gratuita PQRs: 018000918641

Atención en línea: Lunes a viernes 7:30am a 11:45am y 2:00pm a 5:30pm

contacto@unillanos.edu.co

notificacionesjudiciales@unillanos.edu.co

Fax: 6616800 ext 204

Políticas de privacidad y términos de uso