Expresión proteica del fluido folicular asociado a la calidad del oocito de vacas Cebú

Follicular fluid (FF) protein expression associated with oocyte quality in Zebu cattle

Contenido principal del artículo

Eliana Neira-Rivera
Sonia L. Gutiérrez
Lidy V. Castillo-Barón
José G. Velásquez-Penagos
Jaime A. Cardozo-Cerquera

Resumen

El objetivo de este estudio fue determinar la expresión de proteínas del fluido folicular (FF) y su relación con la calidad del oocito. Se evaluaron 52 ovarios de planta de faenado de vacas Cebú comercial, mediante la técnica de disección y aspiración folicular se obtuvo FF y oocitos. Las evaluaciones realizadas fueron: calidad del oocito por aspecto citoplasmático y células del cúmulos y perfil de proteínas del FF mediante SDS-PAGE. Se realizó el análisis descriptivo, a través del procedimiento MEANS, análisis de varianza (PROC. ANOVA) y para las diferencias estadísticas significativas se usó la prueba de comparación de Bonferroni con un nivel de significancia del 5%, mediante el paquete estadístico SAS®. El 52% de los oocitos se categorizaron con calidad I-II. El análisis unidimensional de las proteínas del FF evidenció la presencia de 25 bandas de proteína entre 9 y 240 kDa. En folículos <3 mm se expresaron 23 bandas, en folículos de 3 y 6 mm 19 bandas y en folículos >6mm 20 bandas. Las bandas de peso molecular (PM) de 26kDa, 57kDa y 68kDa representan la mayor concentración en el FF; 4 bandas de PM 14 KDa, 34 KDa, 76 y 79 KDa, solo en folículos de <3mm, 2 bandas de PM 9 y 91 KDa solo en folículos de >3 mm. La banda de 32 KDa no se observó en folículos > de 6mm. Las bandas de mayor frecuencia de presentación fueron las de 26, 40, 42, 57, 68, 240 KDa. Las bandas de proteína que se asociaron con la calidad del oocito en forma significativa (p<0,05) fueron las de PM 24, 57, 68 y 164 KDa para FF de folículos <3mm y las bandas de PM 13, 26 y 38 kDa entre 3 y 6mm, y la de 26 kDa a folículos > de 6mm. Los resultados nos indican asociaciones de la calidad del oocito con algunas bandas de proteína.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Alavi-Shoushtari S, Asri-Rezai S, Abshenas J. A study of the uterine protein variations during the estrus cycle in the cow: A comparison with the serum proteins. Anim Reprod Sci, 2006;96(1-2):10-20

Aller JF, Callejas SS, Alberio RH. Biochemical and steroid concentrations in follicular fluid and blood plasma in different follicular waves of the estrous cycle from normal and superovulated beef cows. Anim Reprod Sci, 2013;142:113-120

Ambekar A, Nirujogi R, Srikanth S, Chavan S, Kelkar D, Hinduja I, et al. Proteomic analysis of human follicular fluid: A new perspective towards understanding folliculogenesis. J Proteomics. 2013;87:68-77

Andersen M, Kroll J, Byskov A, Faber M. Protein composition in the fluid of individual bovine follicles. J Reprod Fertil. 1976;48(1):109-118

Angelucci S, Ciavardelli D, Di Giuseppe F, Eleuterio E, Sulpizio M, Tiboni GM, et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta - Proteins Proteomics. 2006;1764(11):1775-1785

Armstrong D, Hogg C, Campbell B, Webb R. Insulin-like growth factor (IGF)-binding protein production by primary cultures of ovine granulosa and theca cells. The effects of IGF-I, gonadotropin, and follicle size. Biol Reprod. 1996;55(5):1163-1171

Austin EJ, Mihm M, Evans ACO, et al. Alterations in Intrafollicular Regulatory Factors and Apoptosis During Selection of Follicles in the First Follicular Wave of the Bovine Estrous Cycle. Biol Reprod. 2001;64:839-848

Bianchi L, Gagliardi A, Campanella G, Landi C, Capaldo A, Carleo A, et al. A methodological and functional proteomic approach of human follicular fluid en route for oocyte. J Proteom. 2013;90:61-76

Bijttebier J, Tilleman K, et al. Comparative proteome analysis of porcine follicular fluid and serum reveals that excessive alpha (2)-macroglobulin in serum hampers successful expansion of cumulus-oocyte complexes. Proteomics, 2009;9:4554- 4565

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254

Briggs D, Sharp D, Miller D, Gosden R. Transferrin in the developing ovarian follicle: evidence for de-novo expression by granulosa cells. Mol Hum Reprod; 1999;5(12):1107-1114

Clarke H, Hope S, Byers S, Rodgers RJ. Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans. Reprod. 2006;132(1):119-131

Colazo MG, Mapletoft RJ. Fisiologia del ciclo estral bovino. Conference Paper. De Jong G, van Dijk JP, van Eijk HG. 1990. The biology of transferrin. Clin Chim Acta. 2014;190(1-2):1-46

Dekel N. Cellular Biochemical and molecular mechanisms regulating oocyte maturation. Mol cell endocrinol. 2005;235:19-25

Driancourt MA. Regulation of ovarian follicular dynamics in farm animals. Implications for manipulation of reproduction. Theriogenology. 2001;55(6):1211-1239

Dumont J, Umbhauer M, et al. p90Rsk is not involved in cytostatic factor arrest in mouse oocytes. J Cell Biol. 2005;169:227-231

Fahiminiya S, Reynaud K, Labas V, Batard S, Chastant-Maillard S, Gérard N. Steroid hormones content and proteomic analysis of canine follicular fluid during the preovulatory period. Reprod Biol. 2010;8(1):132

Fahiminiya S, Labas V, Roche S, Dacheux J, Gérard N. Proteomic analysis of mare follicular fluid during late follicle development. Proteome Sci. 2011;9:54

Fortune JE, Hansel W. Concentrations of steroids andgonadotroipns in follicular fluid from normal heifers and heifersprimed for superovulation. Biol Reprod. 1985;32:1069-1079

Fu Q, Huang Y, Wang Z, Chen F, Huang D, Lu Y, et al. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci. 2016;17(5):618. Doi: 10.3390/ijms17050618

Gérard N, Loiseau S, Duchamp G, Seguin F. Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR). Reprod. 2002;124(2):241-248

Gradela A, Roncoletta M, Morani C, Esper C, Franceschini P. Proteínas ligantes do insulin-like growth factor (IGFBPs) e dominância folicular em vacas Bos taurus indicus puras e cruzadas. Braz J Vet Res Anim Sci. 1998;35(5):218-220

Hill D J, Growth factors and the ircellular actions. J Reprod Fertil. 1989;85:723-734

Jans D, Hassan G, Nuclear targeting by growth factors, cytokines and their receptors: a role insignaling?. Bioessays. 1998;20:400- 411

Knight P, Glister C. Local roles of TGF-β superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78:165-183

Kubelka M, Motlik J, et al. Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biol Reprod. 2000;62:292-302

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.” Nature. 1970;227(259):680-685

Leal LS, Moya CF, Fernandes CB, Martins LR, Landim FC, Oba E. 2010. Evaluation of recovery, quality and in vitro nuclear maturation of oocytes obtained from Buffalo and Bovine Ovaries. 9no Congreso de búfalo, Argentina.

Leroy J, Vanholder T, Delanghe J, Opsomer G, Van Soom A, Bols P, De Kruif A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 2004; 80(3-4):201-211

Monget P, Besnard N, Huet C, Pisselet C, Monniaux D. Insulin-like growth factor-binding proteins and ovarian folliculogenesis. Horm Res. 1996;45(3-5):211-217

Mortarino M, Vigo D, et al. Two-dimensional polyacrylamide gel electrophoresis map of bovine ovarian fluid proteins. Electrophoresis. 1999;20:866-869

Nandi S, Girish-Kumar V, Manjunatha BM, Gupta PSP. Biochem-ical composition of ovine follicular fluid in relation to follicle size. Dev.Growth Differ. 2007;49:61-66

Oberst E, Jobim M, Cimarosti H, Souza D, Salbego C, Wald V, Mattos R. Imunoidentificação de Albumina e Osteopontina no Plasma Seminal de Reprodutores Taurinos e Zebuínos. Semina: Ciências Agrárias, 2002;23(1):21-28

Otsuka F. Multiple endocrine regulation by bone morphogenetic protein system. Endocr J. 2010;57(1):3-14

Petrucci BPL, Wolf CA, Arlas TR, Santos GO, Estanislau JF, Fiala S, Mattos RC. Proteomics of mare follicular fluid during follicle development. J Equine Vet Sci. 2014;34(1):115-116

Psilopanagioti A, Papadaki H, Kranioti EF, Alexandrides TK, Varakis JN. Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. Neuroendocrinology; 2009;1:38-47. doi: 10.1159/000151396

Quintana MD, Campos PEC, Herrera P, Gallego C, Padrón E. Comparación de dos métodos de recolección de ovocitos inmaduros para fertilización in vitro FIV obtenidos de hembras bubalus bubalis enviadas a matadero. Rev Salud Anim. 2012;34(1):53-56

Rahman Zia-Ur, Bukhari SA, Ahmad N, Akhtar N, Ijaz A, Yousaf MS, Haq IU. Dynamics of follicular fluid in one-humped camel (Camelus dromedarius). Reprod Domes Anim. 2008;43:664-671

Ribeiro R, Santos A, Castilho C, Giometti J, Guaberto L, Ambiel A, Giometti I. Perfil proteico do líquido folicular coletado de ovários em diferentes fases do ciclo estral de bovinos. Colloquium Agrariae. 2012;8(2):65-74

Rizos D, Burke L, Duffy P, Wade M, Mee JF, Farrel KO, et al. Comparisons between nulliparous heifers and cows as oocyte donors for embryo production in vitro. Theriogenology. 2005;63:939-949

Rodriguez F, Martinez A, Tovar S, Pinilla L, Tena-Sempere M, Dieguez C, et al. Regulation of Pituitary Cell Function by Adiponectin. Endocrinology. 2007;148(1):401-410

Shabankared HK, Kor NM, Hajarian H. The influence of the corpus luteum on metabolites composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 2013;140:109-114

Shamay A, Homans R, Fuerman Y, Levin I, Barash H, Silanikove N, et al. Expression of Albumin in Nonhepatic Tissues and its Synthesis by the Bovine Mammary Gland. J Dairy Sci. 2005;88(2):569-576

Schweigert FJ, Gericke B, Wolfram W, Kaisers U, Dudenhausen JW. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Human Reproduction. 2006;21(11):2960-2968

Sirard MA, Richard F, et al. Controlling meiotic resumption in bovine oocytes: a review. Theriogenology. 1998;49:483-497

Solís CA, Guerra R, Sandoya G, De Armas R. Efecto de sincronización de la onda folicular y de la frecuencia de aspiración de folículos en novillas de la raza Brahman. REDVET Rev Electrón Vet. 2012;13(10):1-16

Sousa PA, Silva SJM, et al. Neurotrophin signaling in oocyte survival and developmental competence: A paradigm for cellular toti-potency. Cloning Stem Cells. 2004;6:375-385

Stojkovic M, Machado SA, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64:904-909

Sunderland SJ, Knight PG, et al. Alterations in Intrafollicular Levels of Different Molecular-Mass Forms of Inhibin During Development of Follicular-Phase and Luteal-Phase Dominant Follicles in Heifers Biol of Reprod 1996;54:453-462

Tabatabaei S, Mamoei M, Aghaei A. Dynamics of ovarian follicularfluid in cattle. Comp Clin Pathol. 2011;20:591-595

Tao J, Zhao G, Zhao X, Li F, Wu X, Hu J, Zhang Y. Proteomic analysis of the follicular fluid of Tianzhu white yak during diestrus. Int J Mol Sci. 2014;15(3):4481-4491

Ulbrich S, Frohlich T, Schulke K, Englberger E, Waldschmitt N, Arnold G, et al. Evidence for Estrogen-Dependent Uterine Serpin (SERPINA14) Expression During Estrus in the Bovine Endometrial Glandular Epithelium and Lumen. Biol Reprod. 2009;81(4):795-805

Valck SDM, De Bie J, Michiels ED, Goovaerts IG, Punjabi U, Ramos-Ibeas P, Leroy JL. The effect of human follicular fluid on bovine oocyte developmental competence and embryo quality. Reproductive Bio Medicine Online. 2015;30(2): 203-207

Villa N, Pulgarín E, Tabares P, Angarita E, Ceballos A. Medidas corporales y concentración sérica y folicular de lípidos y glucosa en vacas Brahman fértiles y subfértiles. Pesqui Agropecu Bras. 2009;44(9):1198-1204

Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352-40363

Wang W, Day B N, et al., How does polyspermy happen in mammalian oocytes Microsc Res Tech. 2003;61:335-341

Yoo S, Bolbot T, Koulova A, Sneeringer R, Humm K, Dagon Y, et al. Complement factors are secreted in human follicular fluid by granulosa cells and are possible oocyte maturation factors. J Obstet Gynaecol Res. 2013;39(2):522-527

Zachut M, Sood P, Levin Y, Moallem U. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. J Proteomics. 2016;139:122-129

Artículos más leídos del mismo autor/a